spindle assembly checkpoint

主轴总成检查点
  • 文章类型: Journal Article
    纺锤体组装检查点(SAC)通过阻止从中期到后期的进展,直到所有染色体都正确地连接到有丝分裂纺锤体上,从而在时间上调节有丝分裂。中心体细化有丝分裂纺锤体在纺锤体两极的空间组织。然而,中心体丢失导致延长有丝分裂,表明中心体也告知哺乳动物细胞有丝分裂的时间组织。这里,我们发现染色体细胞的有丝分裂延迟是由SAC以MPS1依赖的方式强制执行的,并且SAC依赖性有丝分裂延迟是在核体细胞中发生双极细胞分裂所必需的。虽然染色体细胞变成多倍体,多倍体不足以导致依赖SAC介导的延迟以完成细胞分裂。相反,缺乏MPS1活性的分裂失败是由于在染色体纺锤体变为双极之前发生有丝分裂退出。此外,防止中心体分离足以使细胞分裂依赖于SAC依赖性有丝分裂延迟。因此,中心体及其在有丝分裂早期对两个纺锤体极点的定义提供了“及时的二性”,可以在没有SAC依赖性有丝分裂延迟的情况下进行细胞分裂。
    The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a \'timely two-ness\' that allows cell division to occur in absence of a SAC-dependent mitotic delay.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纺锤体组装检查点(SAC)通过操纵有丝分裂检查点复合物(MCC)的独立的动粒依赖性组装来确保染色体分离的保真度。MCC结合并抑制后期促进复合物/环体(APC/C)以推迟有丝分裂退出。然而,尚未完全了解未连接的动子介导MCC形成的机制。这里,表明CCDC68是一种外动子蛋白,优先定位于未连接的动子。此外,CCDC68与SAC因子CDC20相互作用以抑制其自动尿素化和MCC分解。因此,CCDC68抑制APC/C激活,以确保强大的SAC并留出足够的时间进行染色体比对,从而确保染色体的稳定性。因此,研究表明,CCDC68是CDC20依赖性MCC稳定维持有丝分裂检查点激活所必需的.
    The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    干扰有丝分裂中的微管动力学会激活纺锤体组装检查点(SAC),以防止染色体分离错误。SAC通过经由有丝分裂检查点复合物(MCC)抑制后期促进复合物(APC)来诱导有丝分裂阻滞。MCC成分MAD2中和关键的APC辅因子,CDC20,防止退出有丝分裂。延长有丝分裂阻滞可促进线粒体凋亡和caspase激活。然而,有丝分裂细胞死亡对体内组织稳态的影响尚不明确。通过条件性MAD2过表达,我们观察到慢性SAC激活引发小鼠骨髓发育不全和肠萎缩。虽然骨髓抑制可以得到补偿,胃肠萎缩是有害的。值得注意的是,促凋亡Bim/Bcl2l11的缺失可预防胃肠道综合征,虽然失去Noxa/Pmaip或共同删除Bid和Puma/Bbc3都没有这种保护作用,鉴定BIM作为胃肠上皮有丝分裂细胞死亡的限速凋亡效应。相比之下,仅过度表达抗凋亡BCL2,但没有上述仅BH3蛋白缺陷,可以减轻骨髓抑制。我们的发现强调了体内对SAC扰动的组织和细胞类型特异性存活依赖性。
    Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    准确的染色体分离依赖于动子执行多种功能,包括建立和维护微管附件,在姐妹染色单体之间形成精确的双向附件,并激活主轴组件检查点。这些过程的核心是高度保守的Ndc80复合物。这种动粒亚复合物直接与微管相互作用,但也是招募动粒相关因子的关键平台,也是纠错激酶的关键底物。这些运动因子相互作用和调节彼此功能的确切方式仍然未知,大大阻碍了我们对Ndc80复杂依赖过程如何共同发挥作用以协调准确的染色体分离的理解。这里,我们旨在揭示Nuf2的CH域的作用,Ndc80复合体的一个组成部分,确保这些过程。通过广泛的突变分析,我们确定了一个保守的相互作用域,该域由Nuf2的CH域中的两个片段组成,这些片段形成了酵母Ndc80复合物中Mps1的结合位点。有趣的是,这个网站也与Dam1建筑群有联系,这表明Mps1的招募可能会受到与其他因素竞争约束的监管。破坏此“相互作用集线器”的突变体在纺锤体组装检查点功能和严重的染色体分离错误方面表现出缺陷。重要的是,特别恢复Mps1-Ndc80复杂关联可以挽救这些缺陷。我们的发现揭示了Ndc80复杂依赖功能的复杂调节,并强调了Mps1在动粒双向和准确染色体分离中的重要作用。
    Accurate chromosome segregation relies on kinetochores carrying out multiple functions, including establishing and maintaining microtubule attachments, forming precise bi-oriented attachments between sister chromatids, and activating the spindle assembly checkpoint. Central to these processes is the highly conserved Ndc80 complex. This kinetochore subcomplex interacts directly with microtubules but also serves as a critical platform for recruiting kinetochore-associated factors and as a key substrate for error correction kinases. The precise manner in which these kinetochore factors interact and regulate each other\'s function remains unknown, considerably hindering our understanding of how Ndc80 complex-dependent processes function together to orchestrate accurate chromosome segregation. Here, we aimed to uncover the role of Nuf2\'s CH domain, a component of the Ndc80 complex, in ensuring these processes. Through extensive mutational analysis, we identified a conserved interaction domain composed of two segments in Nuf2\'s CH domain that form the binding site for Mps1 within the yeast Ndc80 complex. Interestingly, this site also associates with the Dam1 complex, suggesting Mps1 recruitment may be subject to regulation by competitive binding with other factors. Mutants disrupting this \"interaction hub\" exhibit defects in spindle assembly checkpoint function and severe chromosome segregation errors. Significantly, specifically restoring Mps1-Ndc80 complex association rescues these defects. Our findings shed light on the intricate regulation of Ndc80 complex-dependent functions and highlight the essential role of Mps1 in kinetochore bi-orientation and accurate chromosome segregation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    忠实的染色体分离要求姐妹染色单体建立双向的动粒-微管附件。主轴装配检查点(SAC)防止因附件不完整而过早出现后期。然而,微管附着和检查点信号如何协调仍不清楚.保守的激酶Mps1通过瞬时定位于前中期的动子来启动SAC信号传导,并在双向时释放。使用生物化学,结构预测,和细胞检测,我们揭示了酿酒酵母中的这种动态行为。Mps1的保守N端节段结合Ndc80:Nuf2的颈部区域,Ndc80是动静脉的主要微管受体。这个接口的突变破坏,位于配对CH结构域的背面,与微管结合位点相对,阻止Mps1本地化,消除SAC信令,并损害生长。Ndc80:Nuf2的相同界面结合微管相关Dam1复合物。我们证明了纠错激酶Ipl1/AuroraB控制Dam1和Mps1之间对相同结合位点的竞争。因此,Dam1复合物与Ndc80:Nuf2的结合可能会从动粒释放Mps1以促进后期发作。
    Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    热应激是全球农作物生产的主要威胁,了解其对植物肥力的影响对于开发气候适应型作物至关重要。尽管已知热胁迫对植物繁殖的负面影响,潜在的分子机制仍然知之甚少。这里,我们研究了温度升高对拟南芥减数分裂过程中着丝粒结构和染色体分离的影响。与以前的研究一致,热胁迫导致花粉母细胞的生育力下降和微核形成。我们的结果表明,随着温度的升高,减数分裂着丝粒上的着丝粒组蛋白和动粒蛋白BMF1的量减少。此外,我们表明,热应激会增加减数分裂分裂的持续时间,并延长减数分裂I期间纺锤体组装检查点的活性,表明动粒附着在纺锤体微管上的效率受损。我们对着丝粒组蛋白水平降低的突变体的分析表明,弱化的着丝粒会使植物对高温敏感,即使在中等温度下也会导致减数分裂缺陷和生育能力下降。这些结果表明拟南芥减数分裂着丝粒的结构和功能对热胁迫高度敏感,并表明着丝粒和动子可能是植物适应温度升高的关键瓶颈。
    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纺锤体组装和染色体分离的控制机制对于防止细胞分裂过程中的非整倍性至关重要。哺乳动物生殖细胞和胚胎容易出现染色体分离错误,产生的非整倍性是发育终止或严重发育障碍的主要原因。在这里,我们专注于早期小鼠胚胎,并结合使用涉及显微注射的方法,免疫检测和共聚焦活细胞成像,我们专注于纺锤组件检查点(SAC)和后期促进复合物/环体(APC/C)。这些是在有丝分裂期间协作以确保准确染色体分离的两个重要机制。并在受精后的前两次有丝分裂中评估了它们的活性。我们的结果显示,在受精卵和2细胞胚胎中,与卵母细胞相比,SAC核心蛋白Mad1在动胎上显示出非常低的水平,并且其与染色体的相互作用仅限于核膜拆解(NEBD)后的短时间间隔。2细胞胚胎暴露于低水平的纺锤体毒物并不能防止后期,尽管药物引起的纺锤体损伤。最后,在主轴装配完成之前,APC/C与NEBD同时激活。这种APC/C活性的早期发作,与染色体中Mad1的早熟重新定位一起,防止SAC对主轴装配进行适当的监控。该结果有助于了解早期胚胎非整倍体的起源。
    Control mechanisms of spindle assembly and chromosome segregation are vital for preventing aneuploidy during cell division. The mammalian germ cells and embryos are prone to chromosome segregation errors, and the resulting aneuploidy is a major cause of termination of development or severe developmental disorders. Here we focused on early mouse embryos, and using combination of methods involving microinjection, immunodetection and confocal live cell imaging, we concentrated on the Spindle Assembly Checkpoint (SAC) and Anaphase Promoting Complex/Cyclosome (APC/C). These are two important mechanisms cooperating during mitosis to ensure accurate chromosome segregation, and assessed their activity during the first two mitoses after fertilization. Our results showed, that in zygotes and 2-cell embryos, the SAC core protein Mad1 shows very low levels on kinetochores in comparison to oocytes and its interaction with chromosomes is restricted to a short time interval after nuclear membrane disassembly (NEBD). Exposure of 2-cell embryos to low levels of spindle poison does not prevent anaphase, despite the spindle damage induced by the drug. Lastly, the APC/C is activated coincidentally with NEBD before the spindle assembly completion. This early onset of APC/C activity, together with precocious relocalization of Mad1 from chromosomes, prevents proper surveillance of spindle assembly by SAC. The results contribute to the understanding of the origin of aneuploidy in early embryos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:丝裂原激活的蛋白激酶(MAPK)通过将环境的物理化学波动转化为多种适应性反应来维持细胞稳态。这些反应涉及转录重新连接和细胞周期转换的调节,在其他人中。然而,应激条件如何影响有丝分裂的进展在很大程度上是未知的。有丝分裂检查点是一种监视机制,可以在染色体捕获缺陷的情况下抑制有丝分裂的退出,从而防止非整倍体的产生。在这项研究中,我们研究了MAPKPmk1在应激时有丝分裂退出的调节中的作用。
    结果:我们表明,裂殖酵母细胞缺乏Pmk1,细胞完整性途径(CIP)的MAP激酶效应,对微管损伤过敏,并且在维持中期停滞方面存在缺陷。Epistasis分析表明,Pmk1参与维持主轴装配检查点(SAC)信号,并且它的删除是由于缺少Mad2和Mad3等核心SAC组件。引人注目的是,在不受干扰的生长过程中,pmk1Δ细胞的后期促进复合物(APC/C)激活剂Cdc20Slp1的水平增加了两倍。我们证明了Pmk1通过规范的MAPK对接位点与Cdc20Slp1N端物理相互作用。最重要的是,Cdc20Slp1池通过需要MAPK活性的机制在经历有丝分裂的应激细胞中快速降解,Mad3和蛋白酶体,从而导致延迟的有丝分裂退出。
    结论:我们的数据揭示了MAPK在防止有丝分裂退出和胞质分裂激活方面的新功能。MAPKPmk1对Cdc20Slp1周转的调节提供了一个关键机制,通过该机制可以相对于环境条件调整有丝分裂退出的时间。
    BACKGROUND: Mitogen-activated protein kinases (MAPKs) preserve cell homeostasis by transducing physicochemical fluctuations of the environment into multiple adaptive responses. These responses involve transcriptional rewiring and the regulation of cell cycle transitions, among others. However, how stress conditions impinge mitotic progression is largely unknown. The mitotic checkpoint is a surveillance mechanism that inhibits mitotic exit in situations of defective chromosome capture, thus preventing the generation of aneuploidies. In this study, we investigate the role of MAPK Pmk1 in the regulation of mitotic exit upon stress.
    RESULTS: We show that Schizosaccharomyces pombe cells lacking Pmk1, the MAP kinase effector of the cell integrity pathway (CIP), are hypersensitive to microtubule damage and defective in maintaining a metaphase arrest. Epistasis analysis suggests that Pmk1 is involved in maintaining spindle assembly checkpoint (SAC) signaling, and its deletion is additive to the lack of core SAC components such as Mad2 and Mad3. Strikingly, pmk1Δ cells show up to twofold increased levels of the anaphase-promoting complex (APC/C) activator Cdc20Slp1 during unperturbed growth. We demonstrate that Pmk1 physically interacts with Cdc20Slp1 N-terminus through a canonical MAPK docking site. Most important, the Cdc20Slp1 pool is rapidly degraded in stressed cells undergoing mitosis through a mechanism that requires MAPK activity, Mad3, and the proteasome, thus resulting in a delayed mitotic exit.
    CONCLUSIONS: Our data reveal a novel function of MAPK in preventing mitotic exit and activation of cytokinesis in response to stress. The regulation of Cdc20Slp1 turnover by MAPK Pmk1 provides a key mechanism by which the timing of mitotic exit can be adjusted relative to environmental conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    癌细胞消耗更多的葡萄糖并且通常过表达葡萄糖转运蛋白,葡萄糖转运蛋白已经成为抗癌药物开发的潜在靶标。已经证明,选择性SGLT2抑制剂,比如canagliflozin和dapagliflozin,显示抗癌活性。在这里,我们证明了canagliflozin和dapagliflozin协同增强了紫杉醇在包括卵巢癌和口腔鳞状细胞癌细胞在内的癌细胞中的生长抑制作用。Canagliflozin还通过GLUT抑制葡萄糖摄取。紫杉醇和GLUT抑制剂WZB117的组合,表现出强烈的协同作用,支持canagliflozin对GLUTs的抑制作用也可能是canagliflozin和紫杉醇之间协同作用的原因.在ES-2卵巢癌细胞中的机制研究表明,canagliflozin增强了紫杉醇诱导的细胞凋亡和DNA损伤作用。纳米摩尔范围内的紫杉醇升高了异常有丝分裂细胞以及非整倍体细胞,和canagliflozin进一步增强了这种效果。此外,canagliflozin下调细胞周期蛋白B1和磷酸-BUBR1在纺锤体组装检查点(SAC)被紫杉醇激活时,并可能因此损害SAC。因此,紫杉醇干扰微管动力学和canagliflozin损害SAC活性,它们一起可能会诱导过早的有丝分裂退出,DNA损伤的非整倍体细胞的积累,最终是细胞凋亡。
    Cancer cells consume more glucose and usually overexpress glucose transporters which have become potential targets for the development of anticancer drugs. It has been demonstrated that selective SGLT2 inhibitors, such as canagliflozin and dapagliflozin, display anticancer activity. Here we demonstrated that canagliflozin and dapagliflozin synergistically enhanced the growth inhibitory effect of paclitaxel in cancer cells including ovarian cancer and oral squamous cell carcinoma cells. Canagliflozin also inhibited glucose uptake via GLUTs. The combination of paclitaxel and WZB117, a GLUT inhibitor, exhibited a strong synergy, supporting the notion that inhibition of GLUTs by canagliflozin may also account for the synergy between canagliflozin and paclitaxel. Mechanistic studies in ES-2 ovarian cancer cells revealed that canagliflozin potentiated paclitaxel-induced apoptosis and DNA damaging effect. Paclitaxel in the nanomolar range elevated abnormal mitotic cells as well as aneuploid cells, and canagliflozin further enhanced this effect. Furthermore, canagliflozin downregulated cyclin B1 and phospho-BUBR1 upon spindle assembly checkpoint (SAC) activation by paclitaxel, and may consequently impair SAC. Thus, paclitaxel disturbed microtubule dynamics and canagliflozin compromised SAC activity, together they may induce premature mitotic exit, accumulation of aneuploid cells with DNA damage, and ultimately apoptosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纺锤体组装检查点(SAC)通过监测动粒-微管附着来确保细胞分裂过程中忠实的染色体分离。植物产生序列保守和发散的SAC成分,SAC激活如何导致这些蛋白质在未连接的动体上组装以防止细胞进入后期,这在很大程度上是未知的。在拟南芥中,在整个有丝分裂过程中,在动子上检测到非经典BUB3.3蛋白,与仅与未连接染色体相关的MAD1和植物特异性BUB1/MAD3家族蛋白BMF3不同。当BUB3.3因基因突变而丢失时,有丝分裂细胞经常进入后期,染色体错位,并在被低剂量的微管解聚剂oryzalin攻击后呈现滞后的染色体,导致微核的形成。令人惊讶的是,其他SAC蛋白的动粒定位不需要BUB3.3,反之亦然。相反,BUB3.3通过两个内部重复基序与BMF3特异性结合,这两个内部重复基序不是BMF3动子定位所必需的。这种相互作用使BMF3能够招募CDC20,一个下游的SAC目标,独立的动臂。一起来看,我们的发现表明,植物SAC利用非常规的蛋白质相互作用来阻止有丝分裂,随着BUB3.3指导BMF3在CDC20招募中的角色,而不是在真菌和动物中观察到的BUB1/MAD3蛋白的募集。这种独特的机制突出了植物如何适应保守细胞周期机制的不同版本以实现专门的SAC控制。
    The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3\'s role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号