somatosensation

躯体感觉
  • 文章类型: Journal Article
    尽管我们对身体有丰富的经验,我们对身体大小的看法远非真实。例如,当估计他们身体部位长度的相对比例时,使用手作为度量,个体倾向于表现出不同身体部位的系统性扭曲。虽然对健康人群的广泛研究集中在对身体部位长度的感知上,关于单个身体部位的宽度和包括这些表示的各种组件的感知是已知的。在四个实验中,身体部位宽度的相对比例的表示进行了研究,既为自我,也为他人,当使用双手时,或者一个手大小的棍子作为度量。总的来说,我们发现身体部位的感知宽度存在扭曲;然而,在所有实验中观察到不同的扭曲模式。此外,实验之间的变异性似乎不受评估时使用的度量类型或个人姿势的限制。因此,研究结果表明,与身体部分长度的感知不同,使用相同的方法进行评估,我们在这项任务中测量的身体部位的宽度表示不是固定的,并且在个人和上下文中有所不同。我们建议,因为导航我们的环境不一定需要存储这些部分的宽度表示,这些可能不是由我们的感知系统来维持的,因此,可变的任务绩效反映了特质猜测策略的参与。
    Despite our wealth of experience with our bodies, our perceptions of our body size are far from veridical. For example, when estimating the relative proportions of their body part lengths, using the hand as a metric, individuals tend to exhibit systematic distortions which vary across body parts. Whilst extensive research with healthy populations has focused on perceptions of body part length, less is known about perceptions of the width of individual body parts and the various components comprising these representations. Across four experiments, representations of the relative proportions of body part width were investigated for both the self and other, and when using both the hand, or a hand-sized stick as the metric. Overall, we found distortions in the perceived width of body parts; however, different patterns of distortions were observed across all experiments. Moreover, the variability across experiments appears not to be moderated by the type of metric used or individuals\' posture at the time of estimation. Consequently, findings suggest that, unlike perceptions of body part length, assessed using an identical methodology, our representations of the width of the body parts measured in this task are not fixed and vary across individuals and context. We propose that, as stored width representations of these parts are not necessarily required for navigating our environments, these may not be maintained by our perceptual systems, and thus variable task performance reflects the engagement of idiosyncratic guessing strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Pacinian小体神经元是专门的低阈值机械感受器(LTMR),可调节以检测高频振动(〜50-2,000Hz);然而,目前尚不清楚Pacinians和其他LTMR如何对自然行为中遇到的机械力进行编码。这里,我们开发了在清醒时记录LTMR的方法,自由移动的老鼠我们发现Pacinians,但不是其他LTMR,编码动物遇到的表面的细微振动,包括2米以外的低振幅振动。引人注目的是,在各种各样的自然行为中,Pacinians也非常活跃,包括走路,梳理,挖,和攀爬。后肢中的Pacinians足够敏感,可以被前肢或上身主导的行为激活。最后,我们发现PacinianLTMR具有不同的调谐和灵敏度。我们的发现表明,Pacinian人口代码用于表示由远程位置发出的自我启动运动和低振幅环境振动产生的振动触觉特征。
    Pacinian corpuscle neurons are specialized low-threshold mechanoreceptors (LTMRs) that are tuned to detect high-frequency vibration (∼50-2,000 Hz); however, it is unclear how Pacinians and other LTMRs encode mechanical forces encountered during naturalistic behavior. Here, we developed methods to record LTMRs in awake, freely moving mice. We find that Pacinians, but not other LTMRs, encode subtle vibrations of surfaces encountered by the animal, including low-amplitude vibrations initiated over 2 m away. Strikingly, Pacinians are also highly active during a wide variety of natural behaviors, including walking, grooming, digging, and climbing. Pacinians in the hindlimb are sensitive enough to be activated by forelimb- or upper-body-dominant behaviors. Finally, we find that Pacinian LTMRs have diverse tuning and sensitivity. Our findings suggest a Pacinian population code for the representation of vibro-tactile features generated by self-initiated movements and low-amplitude environmental vibrations emanating from distant locations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fpain.2024.1374929。].
    [This corrects the article DOI: 10.3389/fpain.2024.1374929.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    触觉是由体感神经元和皮肤细胞的联合功能赋予的。这些细胞通过由基底层填充的间隙相遇,在后生动物中发现的古老结构。使用秀丽隐杆线虫,我们研究了表皮和触摸受体神经元(TRN)界面的细胞外基质的组成和超微结构。我们证明含有层粘连蛋白的膜-基质复合物,Nidogen,MEC-4机电转换通道位于该界面处,并且是正确触感的中心。有趣的是,这些复合物的尺寸和间距与连续截面透射电子显微照片中观察到的不连续束状细胞外基质结构相对应。这些复合物无法在触摸不敏感的细胞外基质突变体和解离的神经元中合并。巢蛋白的损失降低了机械感受器复合物的密度和它们携带的触摸诱发电流的幅度。因此,神经元-上皮细胞界面在机械感觉复杂的组装和功能中起重要作用。与覆盖咽部和体壁肌肉的基底层不同,nidogen沿TRN募集到puncta不依赖于层粘连蛋白结合。MEC-4,但不是层粘连蛋白或nidogen,由细胞外基质成分的C末端Kunitz结构域中的点突变不稳定,MEC-1.这些发现表明,体感神经元分泌的蛋白质会积极地重新利用基底层,以产生负责振动触觉感知的特殊用途的机械感觉复合物。
    The sense of touch is conferred by the conjoint function of somatosensory neurons and skin cells. These cells meet across a gap filled by a basal lamina, an ancient structure found in metazoans. Using Caenorhabditis elegans, we investigate the composition and ultrastructure of the extracellular matrix at the epidermis and touch receptor neuron (TRN) interface. We show that membrane-matrix complexes containing laminin, nidogen, and the MEC-4 mechano-electrical transduction channel reside at this interface and are central to proper touch sensation. Interestingly, the dimensions and spacing of these complexes correspond with the discontinuous beam-like extracellular matrix structures observed in serial-section transmission electron micrographs. These complexes fail to coalesce in touch-insensitive extracellular matrix mutants and in dissociated neurons. Loss of nidogen reduces the density of mechanoreceptor complexes and the amplitude of the touch-evoked currents they carry. Thus, neuron-epithelium cell interfaces are instrumental in mechanosensory complex assembly and function. Unlike the basal lamina ensheathing the pharynx and body wall muscle, nidogen recruitment to the puncta along TRNs is not dependent upon laminin binding. MEC-4, but not laminin or nidogen, is destabilized by point mutations in the C-terminal Kunitz domain of the extracellular matrix component, MEC-1. These findings imply that somatosensory neurons secrete proteins that actively repurpose the basal lamina to generate special-purpose mechanosensory complexes responsible for vibrotactile sensing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:我们打算长期恢复躯体感觉,并通过一种新颖的方法为肢体缺失的患者提供高保真的肌电控制,分布式,高通道计数,植入系统。
    方法:我们开发了植入式体感神经电刺激和感应(iSens®)系统,可通过多达64、96或128个电极触点支持周围神经刺激,并从16、8或0个双极部位进行肌电记录,分别。可充电中央设备具有Bluetooth®无线遥测,可与外部设备进行通信,并可连接多达四个植入卫星刺激或记录设备的有线连接。我们表征了刺激,录音,电池运行时,和无线性能,并完成了安全测试,以支持其在人体试验中的使用。
    结果:刺激器在一系列参数中按预期运行,并且可以调度多个异步,交错脉冲序列受总电荷输送限制。当距离ImA刺激源10cm时,在盐水中记录的信号显示可忽略的刺激伪影。在盐水躯干体模中,无线遥测范围超过1m(取决于方向和方向)。带宽支持刺激命令和数据特征的100Hz双向更新速率或流式选择全带宽肌电信号。初步的人类首次数据验证了台架测试结果。
    结论:我们开发了,tested,并在临床上实施了先进的,模块化,完全植入的外周刺激和感知系统,用于体感恢复和肌电控制。电极类型和数量的模块化,包括分布式传感和刺激,支持各种各样的应用;iSens®是一个灵活的平台,使周围神经调节应用到临床现实。
    结果:政府IDNCT04430218。 .
    Objective. We intend to chronically restore somatosensation and provide high-fidelity myoelectric control for those with limb loss via a novel, distributed, high-channel-count, implanted system.Approach.We have developed the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system to support peripheral nerve stimulation through up to 64, 96, or 128 electrode contacts with myoelectric recording from 16, 8, or 0 bipolar sites, respectively. The rechargeable central device has Bluetooth® wireless telemetry to communicate to external devices and wired connections for up to four implanted satellite stimulation or recording devices. We characterized the stimulation, recording, battery runtime, and wireless performance and completed safety testing to support its use in human trials.Results.The stimulator operates as expected across a range of parameters and can schedule multiple asynchronous, interleaved pulse trains subject to total charge delivery limits. Recorded signals in saline show negligible stimulus artifact when 10 cm from a 1 mA stimulating source. The wireless telemetry range exceeds 1 m (direction and orientation dependent) in a saline torso phantom. The bandwidth supports 100 Hz bidirectional update rates of stimulation commands and data features or streaming select full bandwidth myoelectric signals. Preliminary first-in-human data validates the bench testing result.Significance.We developed, tested, and clinically implemented an advanced, modular, fully implanted peripheral stimulation and sensing system for somatosensory restoration and myoelectric control. The modularity in electrode type and number, including distributed sensing and stimulation, supports a wide variety of applications; iSens® is a flexible platform to bring peripheral neuromodulation applications to clinical reality. ClinicalTrials.gov ID NCT04430218.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多巴胺严重影响奖励处理,感官知觉,和电机控制。然而,感觉经验对多巴胺能信号的调节还没有完全描述。这里,通过使用双侧单行晶须剥夺进行人工感官体验,我们证明,多巴胺能信号通路(DSP)中的基因转录在初级体感(桶状)皮层(S1)的颗粒层和球上层都经历了经验依赖性可塑性。感官体验和剥夺竞争DSP转录在邻近皮质柱中的重新调节,感觉剥夺引起的DSP变化在地形上受到限制。DSP中的这些变化超出了皮质图的可塑性,并影响神经元信息处理。D2受体的药理学规范,DSP的关键部件,揭示D2受体激活抑制兴奋性神经元兴奋性,超极化-使动作电位阈值,并降低瞬时点火率。这些发现表明,多巴胺能驱动起源于中脑多巴胺能神经元,瞄准感觉皮层,受到经验依赖的调节,可能会创建一个调节反馈回路来调节感官处理。最后,利用拓扑基因网络分析和互信息,我们确定了DSP经验依赖可塑性的分子中心。这些发现为感觉体验塑造大脑中多巴胺能信号的机制提供了新的见解,并可能有助于解开多巴胺耗尽后观察到的感觉缺陷。
    Dopamine critically influences reward processing, sensory perception, and motor control. Yet, the modulation of dopaminergic signaling by sensory experiences is not fully delineated. Here, by manipulating sensory experience using bilateral single-row whisker deprivation, we demonstrated that gene transcription in the dopaminergic signaling pathway (DSP) undergoes experience-dependent plasticity in both granular and supragranular layers of the primary somatosensory (barrel) cortex (S1). Sensory experience and deprivation compete for the regulation of DSP transcription across neighboring cortical columns, and sensory deprivation-induced changes in DSP are topographically constrained. These changes in DSP extend beyond cortical map plasticity and influence neuronal information processing. Pharmacological regulation of D2 receptors, a key component of DSP, revealed that D2 receptor activation suppresses excitatory neuronal excitability, hyperpolarizes the action potential threshold, and reduces the instantaneous firing rate. These findings suggest that the dopaminergic drive originating from midbrain dopaminergic neurons, targeting the sensory cortex, is subject to experience-dependent regulation and might create a regulatory feedback loop for modulating sensory processing. Finally, using topological gene network analysis and mutual information, we identify the molecular hubs of experience-dependent plasticity of DSP. These findings provide new insights into the mechanisms by which sensory experience shapes dopaminergic signaling in the brain and might help unravel the sensory deficits observed after dopamine depletion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    颞下颌关节(TMJ)由骨骼组成,软骨,韧带,以及相关的咀嚼肌肉和肌腱协调以使哺乳动物咀嚼。TMJ受三叉神经(CNV)支配,包含运动和体感神经元的轴突。躯体感觉包括触觉,温度,本体感受,和疼痛,使哺乳动物能够识别和反应刺激生存。TMJ的躯体感觉神经支配仍然不明确。TMJ(TMD)的病因和表现多种多样。一些与TMD相关的已知症状包括面部,肩膀,或颈部疼痛,下巴弹出或咔嗒声,头痛,牙痛,还有耳鸣.TMD的急性或慢性疼痛源于体感伤害感受器的激活。TMD的治疗可能涉及非处方药和处方药,非手术治疗,和手术治疗。在许多情况下,治疗只能暂时缓解包括疼痛在内的症状。我们建议,定义颞下颌关节及其相关组织的感觉神经支配,特别关注外周神经支配对慢性疼痛发展的贡献,可以提供对关节疼痛起源的见解,并促进改进的镇痛药和治疗TMD的发展。
    The temporomandibular joint (TMJ) consists of bone, cartilage, ligaments, and associated masticatory muscles and tendons that coordinate to enable mastication in mammals. The TMJ is innervated by the trigeminal nerve (CNV), containing axons of motor and somatosensory neurons. Somatosensation includes touch, temperature, proprioception, and pain that enables mammals to recognize and react to stimuli for survival. The somatosensory innervation of the TMJ remains poorly defined. Disorders of the TMJ (TMD) are of diverse etiology and presentation. Some known symptoms associated with TMD include facial, shoulder, or neck pain, jaw popping or clicking, headaches, toothaches, and tinnitus. Acute or chronic pain in TMD stems from the activation of somatosensory nociceptors. Treatment of TMD may involve over- the-counter and prescription medication, nonsurgical treatments, and surgical treatments. In many cases, treatment achieves only a temporary relief of symptoms including pain. We suggest that defining the sensory innervation of the temporomandibular joint and its associated tissues with a specific focus on the contribution of peripheral innervation to the development of chronic pain could provide insights into the origins of joint pain and facilitate the development of improved analgesics and treatments for TMD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓刺激(SCS)对慢性疼痛的神经生理作用知之甚少,导致效率低下,易于失败的编程协议和疼痛缓解不足。尽管如此,新的刺激模式在临床上定期引入和采用。传统上,感觉异常被认为是缓解疼痛所必需的,尽管新颖的范例提供镇痛而没有感觉异常。然而,像缓解疼痛,SCS引起的感觉异常的神经生理学基础尚不清楚。这里,我们将生物物理模型与临床感觉异常阈值(两性)配对,以研究刺激频率如何影响与感觉异常和镇痛相关的SCS的神经反应.具体来说,我们对背柱(DC)轴突反应进行了建模,背柱核(DCN)突触传递,直流光纤侧支内的传导故障,和背角网络输出。重要的是,我们发现高频刺激会降低DC纤维激活阈值,这反过来准确地预测临床感觉异常感知阈值。此外,我们表明,高频SCS产生异步直流光纤尖峰和最终异步DCN输出,提供了一个合理的生物物理基础,说明为什么高频SCS比低频刺激不太舒适,并且产生质量上不同的感觉。最后,我们证明了模型背角网络输出对尖峰定时的SCS固有变化敏感,这可能有助于患者之间的异质性疼痛缓解。重要的是,我们表明,模型直流纤维络脉不能可靠地跟随高频刺激,强烈影响网络输出,通常在高频产生抗伤害性作用。总之,这些发现阐明了SCS如何影响神经系统,并提供了对感觉异常产生和疼痛缓解的生物物理学的见解.意义声明脊髓刺激(SCS)对神经系统的影响知之甚少,导致临床成功率不足。这里,我们使用生物物理建模方法来研究SCS的神经反应。我们证明了低频和高频刺激在背柱中产生相反的反应,脑干,和背角。重要的是,我们的建模方法能够准确地预测临床感觉异常阈值作为频率的函数,并为频率依赖性效应对感觉异常质量和疼痛缓解提供合理的生物物理解释。总的来说,我们的结果大大增强了我们对SCS的神经反应的理解,从而为解释临床观察和未来SCS系统开发的关键见解提供了背景。
    The neurophysiological effects of spinal cord stimulation (SCS) for chronic pain are poorly understood, resulting in inefficient failure-prone programming protocols and inadequate pain relief. Nonetheless, novel stimulation patterns are regularly introduced and adopted clinically. Traditionally, paresthetic sensation is considered necessary for pain relief, although novel paradigms provide analgesia without paresthesia. However, like pain relief, the neurophysiological underpinnings of SCS-induced paresthesia are unknown. Here, we paired biophysical modeling with clinical paresthesia thresholds (of both sexes) to investigate how stimulation frequency affects the neural response to SCS relevant to paresthesia and analgesia. Specifically, we modeled the dorsal column (DC) axonal response, dorsal column nucleus (DCN) synaptic transmission, conduction failure within DC fiber collaterals, and dorsal horn network output. Importantly, we found that high-frequency stimulation reduces DC fiber activation thresholds, which in turn accurately predicts clinical paresthesia perception thresholds. Furthermore, we show that high-frequency SCS produces asynchronous DC fiber spiking and ultimately asynchronous DCN output, offering a plausible biophysical basis for why high-frequency SCS is less comfortable and produces qualitatively different sensation than low-frequency stimulation. Finally, we demonstrate that the model dorsal horn network output is sensitive to SCS-inherent variations in spike timing, which could contribute to heterogeneous pain relief across patients. Importantly, we show that model DC fiber collaterals cannot reliably follow high-frequency stimulation, strongly affecting the network output and typically producing antinociceptive effects at high frequencies. Altogether, these findings clarify how SCS affects the nervous system and provide insight into the biophysics of paresthesia generation and pain relief.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由于狗能够完全清醒和不受约束地进行功能性MRI,因此它们越来越多地用作神经科学的模型,经过广泛的行为训练。尽管如此,我们对狗的基本功能神经解剖学知之甚少,包括基本的感知和运动功能是如何在他们的大脑中定位的。这是解释狗fMRI中获得的激活的主要缺点。这项预先注册的研究的目的是定位与体感处理相关的区域。为此,我们用木杆触摸了N=22只接受fMRI扫描的狗的左右两侧。我们确定了解剖学定义的原发性和继发性体感区域(SI和SII)的激活,根据触摸的一侧,侧向对侧半球,重要的是,还激活了SI和SII以外的东西,在扣带皮质,右小脑和疣,还有Sylvian回肠.这些激活可能部分与运动控制(小脑,扣带回),但也可能是体感刺激的高阶认知处理(头端侧视回回),和刺激的情感方面(扣带)。我们还在样本中的绝大多数狗身上发现了个体偏倚的证据,指向体感加工的功能偏侧化。这些发现不仅提供了进一步的证据,表明fMRI适合定位狗的神经认知过程。也扩大了我们对哺乳动物体内触摸处理的理解,超越经典定义的初级和次级体感皮层。
    Dogs are increasingly used as a model for neuroscience due to their ability to undergo functional MRI fully awake and unrestrained, after extensive behavioral training. Still, we know rather little about dogs\' basic functional neuroanatomy, including how basic perceptual and motor functions are localized in their brains. This is a major shortcoming in interpreting activations obtained in dog fMRI. The aim of this preregistered study was to localize areas associated with somatosensory processing. To this end, we touched N = 22 dogs undergoing fMRI scanning on their left and right flanks using a wooden rod. We identified activation in anatomically defined primary and secondary somatosensory areas (SI and SII), lateralized to the contralateral hemisphere depending on the side of touch, and importantly also activation beyond SI and SII, in the cingulate cortex, right cerebellum and vermis, and the sylvian gyri. These activations may partly relate to motor control (cerebellum, cingulate), but also potentially to higher-order cognitive processing of somatosensory stimuli (rostral sylvian gyri), and the affective aspects of the stimulation (cingulate). We also found evidence for individual side biases in a vast majority of dogs in our sample, pointing at functional lateralization of somatosensory processing. These findings not only provide further evidence that fMRI is suited to localize neuro-cognitive processing in dogs, but also expand our understanding of in vivo touch processing in mammals, beyond classically defined primary and secondary somatosensory cortices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号