soil health

土壤健康
  • 文章类型: Journal Article
    通过施用有机肥引入的土壤中的抗生素抗性对人类健康构成了全球公认的威胁。昆虫有机肥由于其抗生素抗性低,可能是一种有前途的替代品。然而,目前尚不清楚如何调节土壤微生物以减少有机肥农业施用中的抗生素抗性。在这项研究中,我们研究了在盆栽和田间系统中施用黑兵蝇有机肥(BOF)的土壤微生物和抗生素抗性。我们的研究表明,BOF可以刺激ARB(抗生素抗性细菌)-抑制土壤微生物组中的芽孢杆菌,并减少抗生素抗性。土壤芽孢杆菌的碳水化合物运输和代谢途径得到加强,加速了多糖的合成和运输,形成生物膜,拮抗土壤ARB,从而降低了抗生素耐药性。我们进一步测试了抑制ARB的芽孢杆菌。在微观分析中,这导致ARGs和ARB的存在显着减少,关键生物膜形成基因(epsA)的丰度更高。这些知识可能有助于开发更有效的生物肥料,旨在减轻土壤抗生素抗性和增强土壤健康,特别是,根据全球“一个健康”的要求。
    Antibiotic resistance in soil introduced by organic fertilizer application pose a globally recognized threat to human health. Insect organic fertilizer may be a promising alternative due to its low antibiotic resistance. However, it is not yet clear how to regulate soil microbes to reduce antibiotic resistance in organic fertilizer agricultural application. In this study, we investigated soil microbes and antibiotic resistome under black soldier fly organic fertilizer (BOF) application in pot and field systems. Our study shows that BOF could stimulate ARB (antibiotic resistant - bacteria) - suppressive Bacillaceae in the soil microbiome and reduce antibiotic resistome. The carbohydrate transport and metabolism pathway of soil Bacillaceae was strengthened, which accelerated the synthesis and transport of polysaccharides to form biofilm to antagonistic soil ARB, and thus reduced the antibiotic resistance. We further tested the ARB - suppressive Bacillus spp. in a microcosm assay, which resulted in a significant decrease in the presence of ARGs and ARB together with higher abundance in key biofilm formation gene (epsA). This knowledge might help to the development of more efficient bio-fertilizers aimed at mitigating soil antibiotic resistance and enhancing soil health, in particular, under the requirements of global \"One Health\".
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在农业生态系统中,土壤微生物群落在维持土壤健康中起着至关重要的作用。然而,如何维持农业生态系统中多种微生物功能的传递仍然知之甚少。这可能会使我们面临在土壤功能之间进行意外权衡的风险。我们阐明了土壤微生物之间的相互作用如何导致农业土壤功能的权衡。土壤微生物群落之间的相互作用不仅可以导致土壤功能之间的正关系,还可以导致中性和负关系。通过改善土壤健康的农业管理来改变土壤条件,可以通过促进土壤微生物的多样性和相互关系来减轻这些功能权衡,这可以帮助实现更有生产力和可持续的农业生态系统。
    Soil microbial communities play pivotal roles in maintaining soil health in agroecosystems. However, how the delivery of multiple microbial functions in agroecosystems is maintained remains poorly understood. This may put us at risk of incurring unexpected trade-offs between soil functions. We elucidate how interactions between soil microbes can lead to trade-offs in the functioning of agricultural soils. Interactions within soil microbial communities can result in not only positive but also neutral and negative relationships among soil functions. Altering soil conditions through soil health-improving agricultural management can alleviate these functional trade-offs by promoting the diversity and interrelationships of soil microbes, which can help to achieve more productive and sustainable agroecosystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过化学合成投入的常规农业做法,主食作物的集约化在粮食安全方面取得了积极成果,但对环境产生了负面影响。使用玉米食用豆科植物间作(MLI)系统等种植系统进行生态强化具有增强土壤健康的潜力,农业生物多样性和显著影响作物生产力。然而,增强生物土壤健康的潜在机制尚未得到很好的研究。这项研究调查了与玉米单作种植系统(MMC)相比,小农农场MLI系统中根际土壤和玉米根微生物群的变化以及相关的土壤理化参数。从肯尼亚东部的25个农场收集了玉米根和根际土壤样品,每个农场都受到MLI和MMC系统的调节。使用黑色氧化和Walkley方法评估土壤特性。高通量扩增子测序用于分析真菌和细菌群落,预测他们的功能角色和多样性。不同的MLI系统显着影响土壤和玉米根微生物群落,导致不同的微生物集。特定的真菌和细菌属和物种主要在MLI系统中受到影响和富集(例如,索拉尼生物,Sarocladiumzeae,镰刀菌,和用于真菌的多节菌,和艾尔卡尼根瘤菌,罗根卡比肠杆菌,泛菌分散和Mitsuariachitosanitabida用于细菌),有助于营养溶解,分解,碳利用,植物保护,生物杀虫剂/肥料生产,和固氮。相反,MMC系统富集了植物病原微生物物种,例如鞘氨醇单胞菌和格格氏杆菌。每个MLI系统都表现出独特的真菌和细菌群落组成,塑造了地下生物多样性,特别是影响土壤属性,植物福祉,疾病控制,和农业生态服务。的确,土壤理化性质,包括pH值,氮,有机碳,磷,与MMC种植系统相比,MLI中的钾富集。因此,具有MLI系统的农业生态系统的多样化增强了土壤特性,并使根际和玉米根微生物组发生了变化,有利于具有重要生态意义的微生物群落。
    Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人口增长带动了对固体建筑材料的需求增加,导致更多的建筑和拆除废物(C&DW)。管理这种浪费的有效策略包括减少,重用,和回收。技术溶胶-由回收废物制成的土壤-可能有助于应对环境挑战。然而,迫切需要探索用C&DW建造的技术解决方案在土地复垦方面的潜力,通过原生植被的生长。这项研究的目的是通过研究两种巴西本地树种(Guazumaulmifolia和Piptadeniagonoacantha)来研究这种潜力。技术是使用C&DW创建的,有或没有有机堆肥和液体生物肥料。土壤健康指数(SHI)用于评估土壤质量,化学,与对照土壤(Ferralsol)相比,Technosols的生物学指标。结果表明,在所有处理中,促性腺激素植物的高度和总生物量相同。而在Technosols中生长的G.ulmifolia植物表现出更高的高度和总生物量。Technosols中植物发育的增强主要与植物组织中较高的阳离子交换能力和养分浓度有关。添加堆肥的技术溶胶提供了更高的肥力和总有机碳。此外,对于这两个研究物种,技术溶胶与对照物种(~0.38)相比呈现更高的SHI(~0.68)。我们的实验表明,建筑和拆除废物(C&DW)具有形成能够支持巴西本地树木生长的健康技术的巨大潜力。这种方法为解决C&DW处置挑战提供了一种有希望的替代方案,同时作为基于自然的土地复垦解决方案。
    Population growth has driven an increased demand for solid construction materials, leading to higher amounts of construction and demolition waste (C&DW). Efficient strategies to manage this waste include reduction, reuse, and recycling. Technosols-soils engineered from recycled waste-can potentially help with environmental challenges. However, there is a critical need to explore the potential of Technosols constructed with C&DW for land reclamation, through the growth of native vegetation. The objective of this study was to investigate this potential by studying two Brazilian native tree species (Guazuma ulmifolia and Piptadenia gonoacantha). Technosols were created using C&DW, with and without organic compost and a liquid biofertilizer. A soil health index (SHI) was applied to evaluate the soil quality regarding physical, chemical, and biological indicators of Technosols compared to a control soil (Ferralsol). The results showed that P. gonoacantha plants presented the same height and total biomass in all treatments, while G. ulmifolia plants exhibited greater height and total biomass when grown in Technosols. The enhanced plant development in the Technosols was primarily associated with higher cation exchangeable capacity and nutrients concentration in plant tissues. Technosols with added compost provided higher fertility and total organic carbon. Additionally, Technosols presented higher SHI (∼0.68) compared to control (∼0.38) for both studied species. Our experiment reveals that construction and demolition waste (C&DW) have significant potential to form healthy Technosols capable of supporting the growth of native Brazilian trees. This approach offers a promising alternative for addressing C&DW disposal challenges while serving as a nature-based solution for land reclamation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    绿色革命改变了农业的高产,抗逆品种。然而,更可持续的农业发展的迫切需要提出了新的挑战:增加作物产量,提高营养质量,提高资源利用效率。土壤在作物生产系统和生态系统服务中起着至关重要的作用。提供水,营养素,和物理锚定作物生长。尽管植物和土壤科学取得了进步,我们对地下植物-土壤相互作用的理解,影响作物性能和土壤健康,仍然有限。这里,我们认为,缺乏对这些植物-土壤相互作用的理解阻碍了作物的可持续生产。我们建议,有针对性的作物和土壤工程可以提供一个新的方法来实现更高的产量,更有效的可持续作物生产,改善土壤健康。
    The Green Revolution transformed agriculture with high-yielding, stress-resistant varieties. However, the urgent need for more sustainable agricultural development presents new challenges: increasing crop yield, improving nutritional quality, and enhancing resource-use efficiency. Soil plays a vital role in crop-production systems and ecosystem services, providing water, nutrients, and physical anchorage for crop growth. Despite advancements in plant and soil sciences, our understanding of belowground plant-soil interactions, which impact both crop performance and soil health, remains limited. Here, we argue that a lack of understanding of these plant-soil interactions hinders sustainable crop production. We propose that targeted engineering of crops and soils can provide a fresh approach to achieve higher yields, more efficient sustainable crop production, and improved soil health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    气候变化对干旱和半干旱地区的农业构成重大挑战,干旱条件严重影响了西红柿等水密集型作物。这项研究评估了有机改良剂的功效,来源于马粪,和丛枝菌根真菌(AMF)在半干旱田间条件下提高番茄(SolanumlycopersicumL.)果实品质和土壤健康。实验设计包括两个灌溉制度(充分浇水和干旱胁迫)和两个水平的蠕虫肥料施用(C15tha-1和C210tha-1),单独应用或与AMF组合应用。结果表明,干旱胁迫降低了番茄果实的生长和产量,而渗透保护剂积累,抗氧化酶活性,生物活性化合物水平增加,番茄果实的2,2-二苯基-1-苦基肼基自由基清除活性也增加。值得注意的是,生物刺激剂的应用,尤其是(C1+AMF),抵消了干旱的不利影响,与对照相比,通过显著提高水果产量(60%),以及增加抗坏血酸水平(59%)和游离氨基酸含量(90%)。这些处理还改善了果实中生物活性化合物的活性和营养吸收。此外,生物刺激剂的施用对土壤理化性质有积极影响。所获得的结果证实,生物刺激剂的应用可以适用于改善半干旱田间地区水分胁迫条件下的作物可持续性和适应性。
    Climate change poses major challenges for agriculture in arid and semi-arid regions, with drought conditions severely affecting water-intensive crops such as tomatoes. This study evaluates the efficacy of organic amendments, derived from horse manure, and arbuscular mycorrhizal fungi (AMF) on enhancing tomato (Solanum lycopersicum L.) fruit quality and soil health under semi-arid field conditions. The experimental design included two irrigation regimes (well-watered and drought stress) and two levels of vermicompost application (C1 5 t ha-1 and C2 10 t ha-1), applied individually or in combination with AMF. The results indicate that drought stress reduced tomato fruit growth and yield, while osmoprotectant accumulation, antioxidant enzyme activity, and bioactive compound levels increased, and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of tomato fruit also increased. Notably, the biostimulants application, especially (C1+AMF), counteracted the adverse effects of drought, compared to the control, by significantly enhancing fruit yields (60%), as well as increasing ascorbic acid levels (59%) and free amino acids content (90%). These treatments also improved the activity of bioactive compounds and nutrient uptake in the fruit. Furthermore, biostimulant application positively affected the physicochemical properties of soil. The results obtained confirm that the application of biostimulants can be suitable for improving crop sustainability and adaptability under conditions of water stress in semi-arid field regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究探讨了不同条件下农艺管理(AM)对土壤参数的影响。调查耕作方式(TP),营养素管理(NM),作物轮作(CR),有机质(OM),灌溉管理(IM),和覆盖(MS),它旨在揭示对土壤生产力的影响,营养可用性,微生物活性,和整体健康。不同的TP通过压实影响土壤质量,孔隙度,和侵蚀风险。适当的NM对营养循环至关重要,防止失衡和酸化。CR破坏害虫周期,降低杂草压力,并促进营养循环利用。OM管理通过影响有机碳,提高土壤质量。营养可用性,pH值,生育力,和保水。优化IM可调节土壤水分含量,而不会引起内涝。MS有助于OM内容,营养保留,土壤结构,和温度-湿度调节,有利于土壤生物群,聚合,土壤健康和农业生产力。审查强调综合营养素,CR,以及OM管理对生育力和微生物活性的积极影响。不同的TP和IM变化影响土壤健康和作物生产。明智地实施这些做法对于可持续农业至关重要。该综述确定了不确定性,并提出了在确保环境可持续性的同时优化生产率的研究方向。持续的调查可以指导后代在产量和弹性土壤管理之间采取平衡的方法。
    This study explores agronomic management (AM) effects on soil parameters under diverse conditions. Investigating tillage practices (TP), nutrient management (NM), crop rotation (CR), organic matter (OM), irrigation management (IM), and mulching (MS), it aims to reveal impacts on soil productivity, nutrient availability, microbial activity, and overall health. Varied TP affect soil quality through compaction, porosity, and erosion risk. Proper NM is vital for nutrient cycling, preventing imbalances and acidification. CR disrupts pest cycles, reduces weed pressure, and boosts nutrient recycling. OM management enhances soil quality by influencing organic carbon, nutrient availability, pH, fertility, and water retention. Optimizing IM regulates soil water content without inducing waterlogging. MS contributes to OM content, nutrient retention, soil structure, and temperature-moisture regulation, benefiting soil biota, aggregation, soil health and agricultural productivity. The review emphasizes integrated nutrient, CR, and OM management\'s positive impact on fertility and microbial activity. Different TP and IM variations impact soil health and crop production. Judicious implementation of these practices is essential for sustainable agriculture. This synthesis identifies uncertainties and proposes research directions for optimizing productivity while ensuring environmental sustainability. Ongoing inquiry can guide a balanced approach between yields and resilient soil stewardship for future generations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在广泛的时空尺度上量化农田内土壤有机碳(SOC)的变化,为了应对人为和环境因素,为旨在改善土壤健康的可持续农业提供了宝贵的见解。这里,使用经过验证和广泛使用的土壤碳模型(即,RothC),我们模拟了中国集约化农田的SOC动态,这些集约化农田仅占全球耕地面积的7%,占全球人口的22%。我们的研究结果表明,优化的RothC有效地捕获了40年间29个现场试验测得的SOC动态。在1980年至2020年之间,农田最高30厘米土壤深度的平均SOC从40MgCha-1增加到49MgCha-1,导致全国碳固存为1100TgC,平均固碳率为27TgCyr-1。SOC的年增长率(相对于上一年的SOC存量),从20世纪80年代1年<0.2%开始,在20世纪90年代,yr-1达到0.4%左右,在2000年代和2010年代,yr-1进一步上升至约0.8%。值得注意的是,东部和南部地区,约占农田的40%,贡献了全国SOC收益的三分之二。在中国东北,SOC从1980年的58MgCha-1略微下降到2020年的57MgCha-1,导致总下降28TgC。有机碳投入增加,特别是秸秆还田,是SOC增加的关键因素。未来的战略应侧重于针对特定地区的秸秆管理优化。具体来说,在中国东北,增加秸秆还田比例可以防止SOC进一步下降。在SOC增加的地区,例如东部和南部地区,秸秆多样化利用(例如,生物能源生产),可以进一步减少温室气体排放。
    Quantifying changes in soil organic carbon (SOC) stocks within croplands across a broad spatiotemporal scale in response to anthropogenic and environmental factors offers valuable insights for sustainable agriculture aimed to improve soil health. Using a validated and widely used soil carbon model RothC, we simulated the SOC dynamics across intensive croplands in China that support ∼22 % of the global population using only 7 % of the global cropland area. The modelling results demonstrate that the optimized RothC effectively captures SOC dynamics measured across 29 long-term field trials during 40 years. Between 1980 and 2020, the average SOC at the top 30 cm in croplands increased from 40 Mg C ha-1 to 49 Mg C ha-1, resulting in a national carbon sequestration of 1100 Tg C, with an average carbon sequestration rate of 27 Tg C yr-1. The annual increase rate of SOC (relative to the SOC stock of the previous year), starting at <0.2 % yr-1 in the 1980s, reached around 0.4 % yr-1 in the 1990s and further rose to about 0.8 % yr-1 in the 2000s and 2010s. Notably, the eastern and southern regions, comprising about 40 % of the croplands, contributed about two-thirds of the national SOC gain. In northeast China, SOC slightly decreased from 58 Mg C ha-1 in 1980 to 57 Mg C ha-1 in 2020, resulting in a total decline of 28 Tg C. Increased organic C inputs, particularly from the straw return, was the crucial factor in SOC increase. Future strategies should focus on region-specific optimization of straw management. Specifically, in northeast China, increasing the proportion of straw returned to fields can prevent further SOC decline. In regions with SOC increase, such as the eastern and southern regions, diversified straw utilization (e.g., bioenergy production), could further mitigate greenhouse gas emissions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    盐度,由于各种污染物,是全球农作物种植的主要问题。土壤盐分导致渗透胁迫增加,氧化应激,特定离子毒性,植物营养缺乏,地下水污染,以及对生物地球化学循环的负面影响。浸出,流行的补救方法,是昂贵的,能源密集型,需要更多的淡水,并导致养分流失,导致耕地贫瘠和水体富营养化。此外,在与持久性有机污染物共同污染的土壤中,重金属,和纺织染料,浸出技术可能无效。它促进采用微生物修复作为一种有效和生态友好的方法。常见的微生物,如假单胞菌,木霉,而芽孢杆菌由于渗透胁迫常常难以在高盐条件下生存,离子不平衡,和蛋白质变性。嗜盐菌,能够承受高盐水条件,具有利用广谱有机污染物作为碳源和恢复污染环境的显著能力。此外,嗜盐菌可以在胁迫条件下促进植物生长并产生重要的生物酶。嗜盐微生物有助于增加土壤微生物多样性,污染物降解,稳定土壤结构,参与营养动态,生物地球化学循环,提高土壤肥力,和作物生长。这篇综述对污染物降解进行了深入分析,耐盐机制,以及植物-土壤-微生物的相互作用,并提供了对其土壤恢复潜力的整体观点。
    Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    促进可持续作物生产的根本必要性在于建立一种评估土壤健康的可靠技术。考虑到各种管理策略和农业生态环境中动态指标之间的多种相互作用,土壤健康评估是一项挑战。因此,进行了一项研究来确定土壤健康变量,量化土壤健康指数(SHIs),并用比哈尔邦印度恒河盆地的水稻(OryzasativaL.)-小麦(TriticumaestivumL.)系统的生产力来验证它们,印度,在四个对比鲜明的农业气候区(ACZI,II,IIIA&IIIB)。对于这项研究,从每个ACZ获得100个土壤样品(0-15厘米),总共获得400个土壤样品,用于分析20个土壤变量,土壤物理,化学,和生物学特性。为了确定SHI和重要的土壤健康变量,采用主成分分析(PCA)。除了特定的变量,土壤pH值,土壤有机碳(SOC),可用锌和可用水容量被确定为四个ACZ的共同指标。结果表明,在稻麦种植系统下,ACZ-IIIB土壤的SHI(0.19-0.70)高于其他ACZ。ACZ-IIIB的SHI受SOC的影响显著(19.32%),可用P(10.52%),粘土(10.43%),pH值(10.80%),和土壤呼吸(9.8%)。SHI与水稻-小麦(R2=0.79)系统的系统生产力之间的紧密关系表明,选定的土壤健康变量代表了良好的土壤健康。结论是,针对ACZ的SHI是评估和监测土壤健康的有前途的战略,以实现联合国到2030年实现“零饥饿”的可持续发展目标。
    A fundamental necessity in advancing sustainable crop production lies in the establishment of a reliable technique for assessing soil health. Soil health assessment is a challenge considering multiple interactions among dynamic indicators within various management strategies and agroecological contexts. Hence a study was conducted to determine the soil health variables, quantify the soil health index (SHI), and validate them with the productivity of rice (Oryza sativa L.)-wheat (Triticum aestivum L.) system for the Indo Gangetic basin of Bihar, India, under four contrasting agro-climatic zones (ACZ-I, II, IIIA & IIIB). For this study, 100 soil samples (0-15 cm) from each ACZ with a total of 400 soil samples were obtained for analyzing 20 soil health variables (soil physical, chemical, and biological properties). To identify SHI and important soil health variables, principal component analysis (PCA) was employed. Apart from specific variables, soil pH, soil organic carbon (SOC), available Zn and available water capacity (AWC) were identified as common indicators for the four ACZs. Results revealed that under the rice-wheat cropping system, ACZ-IIIB soils had a higher SHI (0.19-0.70) than other ACZs. SHI of ACZ-IIIB was significantly influenced by SOC (19.32 %), available P (10.52 %), clay (10.43 %), pH (10.80 %), and soil respiration (9.8 %). The strong relationship between SHI and system productivity of the rice-wheat (R2 = 0.79) system indicates that the selected soil health variables are representative of good soil health. It is concluded that ACZ-specific SHIs are a promising strategy for evaluating and monitoring soil health to achieve the United Nations\' Sustainable Development Goal of \'zero hunger\' by 2030.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号