shape memory

形状记忆
  • 文章类型: Journal Article
    导电水凝胶在人机交互中有着广泛的应用,触觉传感,和可持续的绿色能源收集。在这里,通过构建与PAM/SA共同作用的双增强剂,构建了双交联网络复合水凝胶(MWCNTs/CNWs/PAM/SA)。通过系统地优化成分,水凝胶具有良好的机械适应性,高电导率灵敏度(GF=5.65,53ms),低滞后(<11%),以及水分子和温度的形状记忆。将纳米纤维素晶体(CNW)弯曲并与聚丙烯酰胺/海藻酸钠(PAM/SA)水凝胶网络的主链缠结,有效地将外部机械力转移到整个物理和化学交联域。将多壁碳纳米管(MWCNTs)填充到水凝胶的交联网络中以有效地增强水凝胶的导电性。值得注意的是,水凝胶被设计为柔性触觉传感器,可以准确地识别和监测来自不同手势动作和温度变化的电信号。它还被组装为摩擦纳米发电机(TENG),为自供电的小型电子设备连续产生稳定的开路电压(28V)。该研究为通过简便的方法设计纳米纤维素和MWCNTs增强的导电水凝胶提供了新的前景。
    Conductive hydrogels have been widely applied in human-computer interaction, tactile sensing, and sustainable green energy harvesting. Herein, a double cross-linked network composite hydrogel (MWCNTs/CNWs/PAM/SA) by constructing dual enhancers acting together with PAM/SA was constructed. By systematically optimizing the compositions, the hydrogel displayed features advantages of good mechanical adaptability, high conductivity sensitivity (GF = 5.65, 53 ms), low hysteresis (<11 %), and shape memory of water molecules and temperature. The nanocellulose crystals (CNWs) were bent and entangled with the backbone of the polyacrylamide/ sodium alginate (PAM/SA) hydrogel network, which effectively transferred the external mechanical forces to the entire physical and chemical cross-linking domains. Multi-walled carbon nanotubes (MWCNTs) were filled into the cross-linking network of the hydrogel to enhance the conductivity of the hydrogel effectively. Notably, hydrogels are designed as flexible tactile sensors that can accurately recognize and monitor electrical signals from different gesture movements and temperature changes. It was also assembled as a friction nanogenerator (TENG) that continuously generates a stable open circuit voltage (28 V) for self-powered small electronic devices. This research provides a new prospect for designing nanocellulose and MWCNTs reinforced conductive hydrogels via a facile method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分层微结构被广泛认为是增强柔性压力传感器性能的最有效的组件之一。然而,具有分层微结构的压力感测层的快速和可控制造仍然是一个重大挑战。在这项研究中,我们提出了一种利用激光诱导的形状记忆聚合物微尺度收缩的方法,以实现快速,可控地制造用于高性能压力感测的分层微结构。我们系统地研究了紫外激光制造参数对分层微结构的结构和形态的影响。一个灵活的压力传感器,配备优化的分层微结构,具有大于15kPa-1的高灵敏度和在0至200kPa范围内的出色线性(R2=0.994)。它具有57和62毫秒的响应和恢复时间,分别,并保持良好的稳定性,持续超过5000个周期。形状记忆聚合物的激光诱导收缩为制造分层微结构提供了一种有效的方法,在智能机器人和可穿戴医疗领域的应用中,具有提高柔性压力传感器性能的巨大潜力。
    Hierarchical microstructures are widely recognized as one of the most effective components for enhancing the performance of flexible pressure sensors. However, the rapid and controllable fabrication of pressure sensing layers with hierarchical microstructures remains a significant challenge. In this study, we propose a method that utilizes laser-induced microscale shrinkage of shape memory polymers to enable rapid and controllable fabrication of hierarchical microstructures for high-performance pressure sensing. We systematically investigate the influence of UV laser fabrication parameters on the architecture and morphology of hierarchical microstructures. A flexible pressure sensor, equipped with optimized hierarchical microstructures, exhibits a high sensitivity larger than 15 kPa-1 and excellent linearity (R2 = 0.994) in a range from 0 to 200 kPa. It features response and recovery times of 57 and 62 ms, respectively, and maintains good stability, enduring over 5,000 cycles. The laser-induced shrinkage of shape memory polymers offers an effective method for the fabrication of hierarchical microstructures, holding great potential to boost the performance of flexible pressure sensors in applications within intelligent robotics and wearable healthcare.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    智能材料通过改变尺寸来对外部触发做出反应,颜色,机械性能,或渗透性。下一代智能材料将不仅能够识别外部触发器并对其做出反应,还能够识别它们的动态。这种材料的唯一现有实例是加热速率敏感的多晶型交联间规聚丙烯。本研究以交联和完全无定形可淬火的半结晶聚对苯二甲酸乙二醇酯(x-PET)为例,提出了加热速率敏感材料的新原理。将x-PET拉伸至高于其熔融温度的高伸长率,并限制淬火至完全无定形状态。然后以不同的加热速率将聚合物加热至120-170°C。由于其加热速率的敏感性,x-PET收缩到不同的稳定长度取决于加热速率。新的长度可用于读出加热速率,并通过机械地切换过程来具体地对此作出响应。对该过程的详细分析表明,无定形拉伸的x-PET开始在Tg以上回缩,并且同时通过结晶使其停止。这些过程的不同速率导致x-PET的加热速率敏感性。
    Smart materials react to external triggers by changing size, color, mechanical properties, or permeability. The next generation of smart materials will be able to not only recognize and react to external triggers but also to their dynamics. The only existing example of such a material is heating rate-sensitive polymorphous cross-linked syndiotactic polypropylene. This study presents a new principle of a heating rate-sensitive material on the example of cross-linked and fully amorphous quenchable semi-crystalline polyethylene terephthalate (x-PET). The x-PET is stretched to high elongation above its melting temperature and constrained quenched to a fully amorphous state. Then the polymer is heated to 120-170 °C with different heating rates. Due to its heating-rate sensitivity, x-PET shrinks to different stabilized lengths dependent on the heating rate. The new length can be used to read out the heating rate and to specifically answer to this by mechanically switching a process. Detailed analytics of this process reveal that amorphous stretched x-PET is starting the retraction above Tg and simultaneously stopping it by crystallization. The different rates of these processes result in the heating rate sensitivity of x-PET.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在组织工程领域,3D打印的形状记忆聚合物(SMP)引起了越来越多的兴趣。了解这些3D打印的SMP如何降解对于它们在临床中的使用至关重要。因为材料特性的微小变化可以显著改变它们在体内植入后的行为。通过体外水解检查3D打印丙烯酸酯化聚(甘油-十二烷二酸酯)(APGD)的降解,酶,和体内皮下植入试验。评估了三种APGD制造方式以确定降解的差异。材料挤出样品在2个月时显示出明显更大的质量和体积损失,与激光切割和大桶光聚合样品相比,在酶和体内降解下。严重的,降解的PGD的熔融转变温度在体外随时间增加,但不是在体内。与对照组相比,APGD植入物周围组织的组织学没有明显的炎症迹象,为3D打印APGD设备在临床上的使用提供了有希望的前景。
    In the field of tissue engineering, 3D printed shape memory polymers (SMPs) are drawing increased interest. Understanding how these 3D printed SMPs degrade is critical for their use in the clinic, as small changes in material properties can significantly change how they behave after in vivo implantation. Degradation of 3D printed acrylated poly(glycerol-dodecanedioate) (APGD) was examined via in vitro hydrolytic, enzymatic, and in vivo subcutaneous implantation assays. Three APGD manufacturing modalities were assessed to determine differences in degradation. Material extrusion samples showed significantly larger mass and volume loss at 2 months, compared to lasercut and vat photopolymerization samples, under both enzymatic and in vivo degradation. Critically, melt transition temperatures of degraded PGD increased over time in vitro, but not in vivo. Histology of tissue surrounding APGD implants showed no significant signs of inflammation compared to controls, providing a promising outlook for use of 3D printed APGD devices in the clinic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    开发结合了高强度和韧性的先进工程聚合物不仅是实现卓越的必要途径,也是一项重大的技术挑战。在这里,首次报道了一种刚性-柔性互锁聚合物(RFIP)具有显着的机械性能,由柔性聚氨酯(PU)和刚性聚酰亚胺(PI)链围绕铜(I)离子中心巧妙编织在一起。通过合理编织PI,PU链,和铜(I)离子,RFIP具有超高强度(是无纺聚合物的两倍,91.4±3.3MPa),韧性(448.0±14.2MJm-3),耐疲劳性(在10.000次循环拉伸后可恢复),和形状记忆特性。模拟结果和表征分析共同支持微观结构和宏观特征之间的相关性,确认交织网络的更大内聚能,并提供对加强增韧机制的见解。在原子和分子水平上编织的本质被融合以获得辉煌和有价值的机械性能,在设计坚固和稳定的聚合物方面开辟了新的视角。
    Developing advanced engineering polymers that combine high strength and toughness represents not only a necessary path to excellence but also a major technical challenge. Here for the first time a rigid-flexible interlocking polymer (RFIP) is reported featuring remarkable mechanical properties, consisting of flexible polyurethane (PU) and rigid polyimide (PI) chains cleverly woven together around the copper(I) ions center. By rationally weaving PI, PU chains, and copper(I) ions, RFIP exhibits ultra-high strength (twice that of unwoven polymers, 91.4 ± 3.3 MPa), toughness (448.0 ± 14.2 MJ m-3), fatigue resistance (recoverable after 10 000 cyclic stretches), and shape memory properties. Simulation results and characterization analysis together support the correlation between microstructure and macroscopic features, confirming the greater cohesive energy of the interwoven network and providing insights into strengthening toughening mechanisms. The essence of weaving on the atomic and molecular levels is fused to obtain brilliant and valuable mechanical properties, opening new perspectives in designing robust and stable polymers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    荧光4D打印材料,作为将荧光特性与4D打印技术相结合的创新材料,引起了广泛的兴趣和研究。在这项研究中,绿色木质素衍生的碳量子点(CQDs)被用作荧光模块,采用可再生聚碳酸亚丙酯聚氨酯(PPCU)增韧。使用简单的熔融挤出方法开发了一种用于4D打印的新型低成本荧光聚乳酸(PLA)复合丝。制备的复合材料的强度保持在32MPa,而断裂伸长率增加了8倍(增加34%),表现出优异的形状固定率(99%),回收率(~92%),和快速的形状记忆恢复速度。PPCU的存在阻止了PLA基质中CQDs的荧光猝灭,使复合材料在365nm紫外光下发出明亮的绿色荧光。复合材料表现出剪切稀化行为,并具有理想的3D打印熔体粘度。获得的结果证明了这些易于制造和低成本长丝的多功能性,开辟了一种新颖、方便的制备强力的方法,艰难,和多功能PLA材料,提高其潜在的应用价值。
    Fluorescent 4D printing materials, as innovative materials that combine fluorescent characteristics with 4D printing technology, have attracted widespread interest and research. In this study, green lignin-derived carbon quantum dots (CQDs) were used as the fluorescent module, and renewable poly(propylene carbonate) polyurethane (PPCU) was used for toughening. A new low-cost fluorescent polylactic acid (PLA) composite filament for 4D printing was developed using a simple melt extrusion method. The strength of the prepared composite was maintained at 32 MPa, while the elongation at break increased 8-fold (34 % increase), demonstrating excellent shape fixed ratio (∼99 %), recovery ratio (∼92 %), and rapid shape memory recovery speed. The presence of PPCU prevented fluorescence quenching of the CQDs in the PLA matrix, allowing the composite to emit bright green fluorescence under 365 nm ultraviolet light. The composite exhibited shear thinning behavior and had an ideal melt viscosity for 3D printing. The results obtained demonstrated the versatility of these easy-to-manufacture and low-cost filaments, opening up a novel and convenient method for the preparation of strong, tough, and multifunctional PLA materials, increasing their potential application value.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    动态键可以促进连接的可逆形成和解离,以响应外部刺激,赋予材料形状记忆和自我修复能力。温度是一种外部刺激,可以很容易地通过加热来控制。响应温度的动态共价键可以可逆地连接,交换,并转化聚合物中的链。在这次审查中,我们引入了在各种温度范围内无需催化剂即可操作的动态共价键。检查了基本的键合机理和动力学,以了解通过平衡控制可逆地进行的动态共价化学。此外,介绍了一种基于各种聚合物实现动态共价偶联的合成方法。可以应用取决于温度的动态共价键并扩展聚合物的使用,为未来智能材料的发展提供预测。
    Dynamic bonds can facilitate reversible formation and dissociation of connections in response to external stimuli, endowing materials with shape memory and self-healing capabilities. Temperature is an external stimulus that can be easily controlled through heat. Dynamic covalent bonds in response to temperature can reversibly connect, exchange, and convert chains in the polymer. In this review, we introduce dynamic covalent bonds that operate without catalysts in various temperature ranges. The basic bonding mechanism and the kinetics are examined to understand dynamic covalent chemistry reversibly performed by equilibrium control. Furthermore, a recent synthesis method that implements dynamic covalent coupling based on various polymers is introduced. Dynamic covalent bonds that operate depending on temperature can be applied and expand the use of polymers, providing predictions for the development of future smart materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水凝胶承受各种动态应力,要求强大的机械性能。尽管取得了重大进展,在不使用潜在有害交联剂的情况下,将水凝胶强度与生物组织和塑料相匹配通常具有挑战性。使用氢键作为牺牲键提供了一种有希望的策略来产生坚韧的,用于生物医学和工业应用的多功能水凝胶。通过热诱导自由基聚合合成了聚(甲基丙烯酸)(PMA)/明胶水凝胶,并仅通过物理键进行交联,不添加任何化学交联剂。明胶的添加增加了水凝胶结构中疏水结构域的形成,作为永久交联点。PMA和明胶含量的增加通常导致较低的平衡水含量(WC),更高的热稳定性和更好的机械性能。抗拉强度和韧性值分别达到1.44±0.17MPa和4.91±0.51MJm-3,而压缩模量和强度达到0.75±0.06MPa和24.81±5.85MPa,分别,WC高于50wt。%.获得的压缩机械性能值与文献中报道的超强水凝胶相当。此外,水凝胶表现出优异的耐疲劳性和生物相容性,以及出色的形状记忆特性,这使它们成为广泛生物医学应用的突出候选者。
    Hydrogels endure various dynamic stresses, demanding robust mechanical properties. Despite significant advancements, matching hydrogels\' strength to biological tissues and plastics is often challenging without applying potentially harmful crosslinkers. Using hydrogen bonds as sacrificial bonds offers a promising strategy to produce tough, versatile hydrogels for biomedical and industrial applications. Poly(methacrylic acid) (PMA)/gelatin hydrogels were synthesized by thermally induced free-radical polymerization and crosslinked only by physical bonds, without adding any chemical crosslinker. The addition of gelatin increased the formation of hydrophobic domains in the structure of the hydrogels, which acted as permanent crosslinking points. The increase in PMA and gelatin contents generally led to a lower equilibrium water content (WC), higher thermal stability and better mechanical properties. The values of tensile strength and toughness reached up to 1.44 ± 0.17 MPa and 4.91 ± 0.51 MJ m-3, respectively, while the compressive modulus and strength reached up to 0.75 ± 0.06 MPa and 24.81 ± 5.85 MPa, respectively, with the WC being higher than 50 wt.%. The obtained values for compressive mechanical properties are comparable with super-strong hydrogels reported in the literature. In addition, hydrogels exhibited excellent fatigue resistance and biocompatibility, as well as great shape memory properties, which make them prominent candidates for a wide range of biomedical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    创伤和骨病引起的不规则骨缺损为手术提供了复杂的植入环境。传统的种植体往往不能很好地与周围的骨缺损界面结合,因此,开发能够适应不规则骨缺损边界的人工骨支架对于骨缺损修复具有重要意义。这项研究成功地利用形状记忆三元共聚物聚乳酸-三亚甲基碳酸酯-羟基乙酸(PLLA-TMC-GA)和多巴胺修饰的纳米羟基磷灰石(PHA)复合材料构建了温度响应性骨修复支架(PTG/PHA),从而增强植入物与周围环境之间的界面相容性。PHA的加入有效提高了支架的亲水性,显著提高了其机械强度。此外,支架表面负载淫羊藿苷(Ica)的海藻酸钠(SA)水凝胶通过药物-支架协同作用促进骨细胞的生长和分化。体内和体外实验均表明,复合支架与淫羊藿苷的协同作用显着增强了骨缺损的修复。本研究为不规则骨缺损的修复提供了一种有前景的组织工程方法。
    Irregular bone defects caused by trauma and bone diseases provide a complex implant environment for surgery. Traditional implants often fail to integrate well with the surrounding bone defect interface, therefore, developing an artificial bone scaffold that can adapt to irregular bone defect boundaries is of significant importance for bone defect repair. This study successfully utilized a shape memory ternary copolymer polylactic acid-trimethylene carbonate-hydroxyacetic acid (PLLA-TMC-GA) and dopamine-modified nano-hydroxyapatite (PHA) composite to construct a temperature-responsive bone repair scaffold (PTG/PHA), thereby enhancing the interface compatibility between the implant and the surrounding environment. The addition of PHA has effectively improved the hydrophilicity of the stent and significantly increased its mechanical strength. Furthermore, the Sodium alginate (SA) hydrogel loaded with Icariin (Ica) coated on the stent surface promotes the growth and differentiation of bone cells through the drug-scaffold synergistic effect. Both in vivo and in vitro experiments have shown that the synergistic effect of the composite stent with Icariin significantly enhances the repair of bone defects. This study provides a promising tissue engineering method for the repair of irregular bone defects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号