sarcomeres

肌节
  • 文章类型: Journal Article
    肌节复合物如何在长期存活的心肌细胞中连续翻转尚不清楚。根据肌节维持的流行模式,肌节由细胞质可溶性蛋白质池维持,在池和肌节之间自由循环。
    我们对表达和内源性肌节蛋白的周转进行了成像和定量,包括巨大的蛋白质肌动蛋白,在培养和体内的心肌细胞中,在单细胞和单个肌节水平上,使用带共价配体的Halo标记蛋白的脉冲追踪标记。
    我们反驳了流行的蛋白质库模型,而是显示了一种有序的机制,其中只有新翻译的蛋白质进入肌节复合物,而较旧的蛋白质被去除和降解。我们还表明,降解与蛋白质年龄无关,并且蛋白水解提取是周转中的限速步骤。我们表明肌节蛋白的替换在细胞内和整个心脏中以相似的速率发生,而在成体细胞中更慢。
    我们的发现为心脏肉瘤亚基置换建立了单向置换模型,并确定了它们的周转原理。
    UNASSIGNED: How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres.
    UNASSIGNED: We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands.
    UNASSIGNED: We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells.
    UNASSIGNED: Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小儿心肌病主要归因于肌节相关基因的变异。不幸的是,约旦以前从未研究过小儿心肌病的遗传结构.我们试图通过Exome测序(ES)揭示来自约旦9个患有几种亚型小儿心肌病的家庭的14名患者的遗传前景。我们的调查确定了九个家庭中的七个(77.8%)的致病性和可能的致病性变异,肌节相关基因的聚类。令人惊讶的是,在糖原贮积障碍和线粒体相关疾病的先证者中,肌节相关肥厚型心肌病的表型明显。我们的研究强调了简化ES或扩展心肌病相关基因面板以鉴定肌节相关心肌病的合理表型的重要性。我们的发现还指出了对心肌病患者及其高危家庭成员进行基因检测的必要性。这可能会导致更好的管理策略,能够进行早期干预,并最终提高他们的预后。最后,我们的发现为约旦目前缺乏的关于心肌病分子基础的知识提供了初步贡献.
    Pediatric cardiomyopathies are mostly attributed to variants in sarcomere-related genes. Unfortunately, the genetic architecture of pediatric cardiomyopathies has never been previously studied in Jordan. We sought to uncover the genetic landscape of 14 patients from nine families with several subtypes of pediatric cardiomyopathies in Jordan using Exome sequencing (ES). Our investigation identified pathogenic and likely pathogenic variants in seven out of nine families (77.8%), clustering in sarcomere-related genes. Surprisingly, phenocopies of sarcomere-related hypertrophic cardiomyopathies were evident in probands with glycogen storage disorder and mitochondrial-related disease. Our study underscored the significance of streamlining ES or expanding cardiomyopathy-related gene panels to identify plausible phenocopies of sarcomere-related cardiomyopathies. Our findings also pointed out the need for genetic testing in patients with cardiomyopathy and their at-risk family members. This can potentially lead to better management strategies, enabling early interventions, and ultimately enhancing their prognosis. Finally, our findings provide an initial contribution to the currently absent knowledge about the molecular underpinnings of cardiomyopathies in Jordan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    来自心肌细胞收缩的机械应力导致错误折叠的肌节蛋白替代。肌节维护利用mRNAs和翻译机制的局部池,然而,本地化翻译的重要性仍不清楚。在本期JCI中,Haddad等人。确定Z线是肌节蛋白局部翻译的关键位点,由核糖体蛋白SA(RPSA)介导。RPSA将核糖体定位在Z线,并通过微管运输。小鼠中RPSA的心肌细胞特异性丢失导致蛋白质翻译错误定位,并引起心肌细胞萎缩的结构扩张。这些发现证明了RPSA依赖性空间定位翻译对于肌节维持和心脏结构和功能的必要性。
    Mechanical stress from cardiomyocyte contraction causes misfolded sarcomeric protein replacement. Sarcomeric maintenance utilizes localized pools of mRNAs and translation machinery, yet the importance of localized translation remains unclear. In this issue of the JCI, Haddad et al. identify the Z-line as a critical site for localized translation of sarcomeric proteins, mediated by ribosomal protein SA (RPSA). RPSA localized ribosomes at Z-lines and was trafficked via microtubules. Cardiomyocyte-specific loss of RPSA in mice resulted in mislocalized protein translation and caused structural dilation from myocyte atrophy. These findings demonstrate the necessity of RPSA-dependent spatially localized translation for sarcomere maintenance and cardiac structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    维他命是机械敏感性肌动蛋白交联蛋白,其将肌动蛋白细胞骨架组织成各种形状和组织。在肌肉中,丝胺交联来自相对肌节的肌动蛋白丝,肌肉的最小收缩单位。这发生在Z盘,肌节的肌动蛋白组织中心。在苍蝇和脊椎动物中,丝状蛋白突变导致脆弱的肌肉出现破裂,提示丝胺通过提供弹性支持和/或通过信号传导来帮助抵抗肌肉收缩期间的肌肉破裂。丝素C末端的弹性区域称为机械敏感区域,已被提出用于感测和抵消收缩损伤。在这里,我们使用果蝇间接飞行肌肉的分子定义的突变体和显微镜分析来研究丝胺为Z盘提供凝聚力的分子细节。我们制作了影响C末端区域的新型细丝蛋白突变以询问机械敏感区域,并检测到三种Z-盘表型:肌动蛋白丝的解离,Z-盘破裂,和Z-光盘放大。我们测试了一个组成型封闭的丝状蛋白突变体,这防止了机械敏感区域的弹性变化,并导致Z盘破裂,和组成型开放突变体,该突变体对机械敏感区域具有相反的弹性作用,并产生扩大的Z盘。最后,我们表明Z型椎间盘破裂需要肌肉收缩。我们建议丝状蛋白通过其机械感觉区域的弹性变化来感知肌原纤维损伤,稳定Z盘,并抵消Z盘的收缩损伤。
    Filamins are mechanosensitive actin crosslinking proteins that organize the actin cytoskeleton in a variety of shapes and tissues. In muscles, filamin crosslinks actin filaments from opposing sarcomeres, the smallest contractile units of muscles. This happens at the Z-disc, the actin-organizing center of sarcomeres. In flies and vertebrates, filamin mutations lead to fragile muscles that appear ruptured, suggesting filamin helps counteract muscle rupturing during muscle contractions by providing elastic support and/or through signaling. An elastic region at the C-terminus of filamin is called the mechanosensitive region and has been proposed to sense and counteract contractile damage. Here we use molecularly defined mutants and microscopy analysis of the Drosophila indirect flight muscles to investigate the molecular details by which filamin provides cohesion to the Z-disc. We made novel filamin mutations affecting the C-terminal region to interrogate the mechanosensitive region and detected three Z-disc phenotypes: dissociation of actin filaments, Z-disc rupture, and Z-disc enlargement. We tested a constitutively closed filamin mutant, which prevents the elastic changes in the mechanosensitive region and results in ruptured Z-discs, and a constitutively open mutant which has the opposite elastic effect on the mechanosensitive region and gives rise to enlarged Z-discs. Finally, we show that muscle contraction is required for Z-disc rupture. We propose that filamin senses myofibril damage by elastic changes in its mechanosensory region, stabilizes the Z-disc, and counteracts contractile damage at the Z-disc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:ELMSAN1(含ELM2-SANT结构域的支架蛋白1)是MiDAC(有丝分裂去乙酰化酶复合物)的一种新鉴定的支架蛋白,在早期胚胎发育中起着举足轻重的作用。对Elmsan1基因敲除小鼠的研究表明,它的缺失会导致胚胎死亡和心脏畸形。然而,ELMSAN1在心脏发育和形成中的精确功能仍然难以捉摸。为了研究它在心脏谱系中的潜在作用,我们采用人诱导的多能干细胞(hiPSCs)建立早期心脏发生模型,并研究了ELMSAN1的功能.
    结果:我们通过敲低和敲除技术产生了ELMSAN1缺陷型hiPSCs。在心脏分化过程中,ELMSAN1耗竭抑制了多能性失活,降低了心脏特异性标志物的表达,并降低了差异化效率。与收缩肌节结构相关的基因表达受损,钙处理,在源自hiPSC的ELMSAN1缺陷型心肌细胞中也注意到离子通道。此外,通过一系列结构和功能评估,我们发现ELMSAN1-nullhiPSC心肌细胞是不成熟的,表现出不完整的肌节Z线结构,减少钙处理,和受损的电生理特性。值得注意的是,我们发现ELMSAN1的心脏特异性作用可能与组蛋白H3K27乙酰化水平相关.转录组分析提供了更多的见解,表明在ELMSAN1敲除的心肌细胞中,随着能量代谢开关的成熟减少和恢复的细胞增殖。
    结论:在这项研究中,我们讨论了ELMSAN1直接参与hiPSC心肌细胞分化和成熟的重要性。我们首先报道了ELMSAN1对hiPSC心肌细胞生成的多个方面的影响,包括心脏分化,肌节形成,钙处理,电生理成熟,和扩散。
    BACKGROUND: ELMSAN1 (ELM2-SANT domain-containing scaffolding protein 1) is a newly identified scaffolding protein of the MiDAC (mitotic deacetylase complex), playing a pivotal role in early embryonic development. Studies on Elmsan1 knockout mice showed that its absence results in embryo lethality and heart malformation. However, the precise function of ELMSAN1 in heart development and formation remains elusive. To study its potential role in cardiac lineage, we employed human-induced pluripotent stem cells (hiPSCs) to model early cardiogenesis and investigated the function of ELMSAN1.
    RESULTS: We generated ELMSAN1-deficient hiPSCs through knockdown and knockout techniques. During cardiac differentiation, ELMSAN1 depletion inhibited pluripotency deactivation, decreased the expression of cardiac-specific markers, and reduced differentiation efficiency. The impaired expression of genes associated with contractile sarcomere structure, calcium handling, and ion channels was also noted in ELMSAN1-deficient cardiomyocytes derived from hiPSCs. Additionally, through a series of structural and functional assessments, we found that ELMSAN1-null hiPSC cardiomyocytes are immature, exhibiting incomplete sarcomere Z-line structure, decreased calcium handling, and impaired electrophysiological properties. Of note, we found that the cardiac-specific role of ELMSAN1 is likely associated with histone H3K27 acetylation level. The transcriptome analysis provided additional insights, indicating maturation reduction with the energy metabolism switch and restored cell proliferation in ELMSAN1 knockout cardiomyocytes.
    CONCLUSIONS: In this study, we address the significance of the direct involvement of ELMSAN1 in the differentiation and maturation of hiPSC cardiomyocytes. We first report the impact of ELMSAN1 on multiple aspects of hiPSC cardiomyocyte generation, including cardiac differentiation, sarcomere formation, calcium handling, electrophysiological maturation, and proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    左西孟旦在心肌细胞中的钙致敏作用已得到证实;然而,其对骨骼肌细胞的潜在影响尚未明确。尽管结果有争议,左西孟旦仍有望通过脱靶部位与骨骼肌相互作用(比肌钙蛋白C更进一步)。除了这场辩论,在一项长度依赖性激活研究中,我们通过将单根肌纤维浸入补充左西孟旦的溶液中,研究了左西孟旦对快速抽搐骨骼肌生物力学的急性影响.我们采用MyoRobot技术研究了在存在或不存在左西孟旦(100µM)的情况下,皮肤单根肌肉纤维的钙敏感性以及它们的应力应变响应。虽然控制数据与长度依赖性激活理论一致,左西孟旦似乎将主动力产生的“下降肢”的开始转移到更长的肌节长度,而没有显着改善肌原纤维钙敏感性。与对照单纤维相比,在左西孟旦存在下的被动拉伸产生了两倍以上的扩大的恢复应力和杨氏模量。这两种作用以前都没有描述过,可能指向左西孟旦的潜在脱靶位点。
    Levosimendan\'s calcium sensitizing effects in heart muscle cells are well established; yet, its potential impact on skeletal muscle cells has not been evidently determined. Despite controversial results, levosimendan is still expected to interact with skeletal muscle through off-target sites (further than troponin C). Adding to this debate, we investigated levosimendan\'s acute impact on fast-twitch skeletal muscle biomechanics in a length-dependent activation study by submersing single muscle fibres in a levosimendan-supplemented solution. We employed our MyoRobot technology to investigate the calcium sensitivity of skinned single muscle fibres alongside their stress-strain response in the presence or absence of levosimendan (100 µM). While control data are in agreement with the theory of length-dependent activation, levosimendan appears to shift the onset of the \'descending limb\' of active force generation to longer sarcomere lengths without notably improving myofibrillar calcium sensitivity. Passive stretches in the presence of levosimendan yielded over twice the amount of enlarged restoration stress and Young\'s modulus in comparison to control single fibres. Both effects have not been described before and may point towards potential off-target sites of levosimendan.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    规则的空间模式是自然界中普遍存在的组织形式。在动物中,从细胞尺度到组织尺度都可以找到规则的模式,从发育的早期阶段到成年。为了理解这些模式的形成,它们是如何组装和成熟的,以及它们如何受到扰动的影响,模式的精确定量描述是必不可少的。然而,生物学家缺乏提供深入分析而不需要计算技能的可访问工具。这里,我们介绍PatternJ,一种新颖的工具集,可以精确自动地分析规则的一维模式。这个工具集,与流行的图像处理程序ImageJ/斐济一起使用,有助于在静态图像和延时系列中的图案重复内和之间提取关键几何特征。我们用模拟数据验证PatternJ,并在昆虫肌肉和收缩心肌细胞的肉瘤图像上进行测试,神经元中的肌动蛋白环,和使用共聚焦荧光显微镜从斑马鱼胚胎中获得的体节,暴风雨,电子显微镜,和明场成像。我们表明,即使使用低信噪比的图像,该工具集也能可靠地实现亚像素特征提取。PatternJ的直接使用和功能使其对于需要定量一维模式分析的各种科学领域具有价值,包括肌肉的肌节生物学或哺乳动物轴突的模式,加快发现与高重现性的奖金。
    Regular spatial patterns are ubiquitous forms of organization in nature. In animals, regular patterns can be found from the cellular scale to the tissue scale, and from early stages of development to adulthood. To understand the formation of these patterns, how they assemble and mature, and how they are affected by perturbations, a precise quantitative description of the patterns is essential. However, accessible tools that offer in-depth analysis without the need for computational skills are lacking for biologists. Here, we present PatternJ, a novel toolset to analyze regular one-dimensional patterns precisely and automatically. This toolset, to be used with the popular imaging processing program ImageJ/Fiji, facilitates the extraction of key geometric features within and between pattern repeats in static images and time-lapse series. We validate PatternJ with simulated data and test it on images of sarcomeres from insect muscles and contracting cardiomyocytes, actin rings in neurons, and somites from zebrafish embryos obtained using confocal fluorescence microscopy, STORM, electron microscopy, and brightfield imaging. We show that the toolset delivers subpixel feature extraction reliably even with images of low signal-to-noise ratio. PatternJ\'s straightforward use and functionalities make it valuable for various scientific fields requiring quantitative one-dimensional pattern analysis, including the sarcomere biology of muscles or the patterning of mammalian axons, speeding up discoveries with the bonus of high reproducibility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Connectin(也称为titin)是一种巨大的横纹肌蛋白,通过为肌节提供弹性而充当分子弹簧。Novex-3是连接蛋白的短剪接变体,其生理功能仍然未知。我们最近使用体外分析证明,除了肌节表达外,novex-3也仅在胎儿时期在心肌细胞核中表达,它提供对心肌细胞核的弹性/顺应性,并促进胎儿的心肌细胞增殖,暗示了非肌节功能。这里,我们分析了novex-3基因敲除小鼠,以评估该功能在体内心脏病理生理学中的作用.novex-3的缺乏损害了胎儿心肌细胞的增殖并诱导了新生儿单个心肌细胞的增大。在成年人中,novex-3缺乏导致腔室扩张和收缩功能障碍,与Ca2+失调有关,导致寿命缩短。机理分析揭示了受损的增殖和异常的核力学之间可能存在关联,包括在敲除的心肌细胞中位于外周的更硬的核与稳定的环核微管。虽然潜在的因果关系还没有完全阐明,这些数据表明novex-3在心脏病理生理学中具有重要的非肌节功能,并且是心肌细胞增殖的早期贡献者。
    Connectin (also known as titin) is a giant striated muscle protein that functions as a molecular spring by providing elasticity to the sarcomere. Novex-3 is a short splice variant of connectin whose physiological function remains unknown. We have recently demonstrated using in vitro analyses that in addition to sarcomere expression, novex-3 was also expressed in cardiomyocyte nuclei exclusively during fetal life, where it provides elasticity/compliance to cardiomyocyte nuclei and promotes cardiomyocyte proliferation in the fetus, suggesting a non-sarcomeric function. Here, we analyzed novex-3 knockout mice to assess the involvement of this function in cardiac pathophysiology in vivo. Deficiency of novex-3 compromised fetal cardiomyocyte proliferation and induced the enlargement of individual cardiomyocytes in neonates. In adults, novex-3 deficiency resulted in chamber dilation and systolic dysfunction, associated with Ca2+ dysregulation, resulting in a reduced life span. Mechanistic analyses revealed a possible association between impaired proliferation and abnormal nuclear mechanics, including stiffer nuclei positioned peripherally with stabilized circumnuclear microtubules in knockout cardiomyocytes. Although the underlying causal relationships were not fully elucidated, these data show that novex-3 has a vital non-sarcomeric function in cardiac pathophysiology and serves as an early contributor to cardiomyocyte proliferation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cofilin,一种肌动蛋白切断蛋白,在肌肉肌节的添加和维持中起着关键作用。我们以前的工作发现果蝇cofilin(DmCFL)肌肉敲除会导致肌肉结构和功能的进行性恶化,并产生由cofilin突变引起的线虫肌病(NM)中可见的特征。我们假设DmCFL敲低对肌动蛋白细胞骨架动力学的破坏会影响肌肉发育的其他方面,and,因此,进行了RNA测序分析,出乎意料地揭示了许多神经肌肉接头(NMJ)基因的上调表达。我们发现DmCFL在肌肉突触后室中富集,并且DmCFL肌肉敲除会导致该亚细胞域中的F-肌动蛋白解体,然后在发育后期观察到肌节缺陷。尽管NMJ基因表达发生变化,我们发现突触前Bruchpilot总活动区或突触后谷氨酸受体总水平无显著变化.然而,DmCFL敲低导致GluRIIA类谷氨酸受体在更多恶化的肌肉中的错位和强烈损害NMJ传输强度。这些发现扩大了我们对cofilin在肌肉中的作用的理解,包括NMJ结构发育,并表明NMJ缺陷可能有助于NM病理生理学。
    Cofilin, an actin-severing protein, plays key roles in muscle sarcomere addition and maintenance. Our previous work found that Drosophila cofilin (DmCFL) knockdown in muscle causes progressive deterioration of muscle structure and function and produces features seen in nemaline myopathy caused by cofilin mutations. We hypothesized that disruption of actin cytoskeleton dynamics by DmCFL knockdown would impact other aspects of muscle development, and, thus, conducted an RNA-sequencing analysis that unexpectedly revealed upregulated expression of numerous neuromuscular junction (NMJ) genes. We found that DmCFL is enriched in the muscle postsynaptic compartment and that DmCFL muscle knockdown causes F-actin disorganization in this subcellular domain prior to the sarcomere defects observed later in development. Despite NMJ gene expression changes, we found no significant changes in gross presynaptic Bruchpilot active zones or total postsynaptic glutamate receptor levels. However, DmCFL knockdown resulted in mislocalization of GluRIIA class glutamate receptors in more deteriorated muscles and strongly impaired NMJ transmission strength. These findings expand our understanding of the roles of cofilin in muscle to include NMJ structural development and suggest that NMJ defects may contribute to the pathophysiology of nemaline myopathy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肥厚型心肌病(HCM)是由约50%的患者中的肌节基因突变(基因型阳性HCM)引起的,并且在另一半患者中没有突变(基因型阴性HCM)。我们探讨了代谢组学和脂质组学景观的改变如何参与两个患者组的心脏重塑。
    我们进行了蛋白质组学,代谢组学,和脂质组学对临床表型良好的HCM患者以及性别和年龄匹配以及体重指数匹配的未失败供体的心脏组织样本(N=20)的心肌切除术样本(基因型阳性N=19;基因型阴性N=22;基因型未知N=6)。整合这些数据集以全面绘制脂质处理和能量代谢途径的变化图。通过将代谢组学和脂质组学数据与临床数据的变异性联系起来,我们探讨了特定于患者组的心脏和代谢重塑之间的关联.
    HCM肌切除术样本显示(1)葡萄糖和糖原代谢增加,(2)脂肪酸氧化下调,和(3)减少神经酰胺形成和脂质储存。在基因型阴性的患者中,间隔肥大和舒张功能障碍与酰基肉碱的降低相关,氧化还原代谢物,氨基酸,戊糖磷酸途径中间体,嘌呤,和嘧啶。相比之下,氧化还原代谢物,氨基酸,戊糖磷酸途径中间体,嘌呤,在基因型阳性的患者中,嘧啶与间隔肥大和舒张功能损害呈正相关。
    我们为HCM的一般和基因型特异性代谢变化提供了新的见解。在基因型阴性和基因型阳性的HCM患者中,不同的代谢改变是心脏疾病进展的基础。
    UNASSIGNED: Hypertrophic cardiomyopathy (HCM) is caused by sarcomere gene mutations (genotype-positive HCM) in ≈50% of patients and occurs in the absence of mutations (genotype-negative HCM) in the other half of patients. We explored how alterations in the metabolomic and lipidomic landscape are involved in cardiac remodeling in both patient groups.
    UNASSIGNED: We performed proteomics, metabolomics, and lipidomics on myectomy samples (genotype-positive N=19; genotype-negative N=22; and genotype unknown N=6) from clinically well-phenotyped patients with HCM and on cardiac tissue samples from sex- and age-matched and body mass index-matched nonfailing donors (N=20). These data sets were integrated to comprehensively map changes in lipid-handling and energy metabolism pathways. By linking metabolomic and lipidomic data to variability in clinical data, we explored patient group-specific associations between cardiac and metabolic remodeling.
    UNASSIGNED: HCM myectomy samples exhibited (1) increased glucose and glycogen metabolism, (2) downregulation of fatty acid oxidation, and (3) reduced ceramide formation and lipid storage. In genotype-negative patients, septal hypertrophy and diastolic dysfunction correlated with lowering of acylcarnitines, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines. In contrast, redox metabolites, amino acids, pentose phosphate pathway intermediates, purines, and pyrimidines were positively associated with septal hypertrophy and diastolic impairment in genotype-positive patients.
    UNASSIGNED: We provide novel insights into both general and genotype-specific metabolic changes in HCM. Distinct metabolic alterations underlie cardiac disease progression in genotype-negative and genotype-positive patients with HCM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号