protein phosphatases

蛋白磷酸酶
  • 文章类型: Journal Article
    可逆蛋白磷酸化通过改变真核生物的构象来调节各种细胞机制,活动,本地化,和底物蛋白的稳定性。在拟南芥根分生组织中,组蛋白翻译后修饰对于正确的细胞分裂至关重要,它们也参与氧化应激信号传导。为了研究活性氧(ROS)与有丝分裂之间的联系,我们处理了各种拟南芥基因型,包括表现出功能失调的野生型和突变体PP2A,与ROS诱导除草剂diquat(DQ)一起使用。研究PP2A的c3c4双催化亚基突变体和fass调节亚基突变体提供了对磷酸化依赖性有丝分裂过程的见解。DQ治疗降低了所有基因型的有丝分裂活性,并导致PP2A突变体的早期有丝分裂停滞,可能是由于氧化应激诱导的对基本有丝分裂过程的损伤。DQ对野生型植物中可逆组蛋白H3磷酸化的影响最小,但显着降低了PP2A突变体中的磷酸化组蛋白H3水平。药物治疗后,磷酸酶活性仅在较强表型突变植物(fass-5和c3c4)中降低。我们的发现表明(i)所研究的PP2A功能丧失突变体对细胞内ROS增加更敏感,并且(ii)DQ具有有丝分裂活性和组蛋白H3磷酸化的间接改变作用。所有这些发现强调了PP2A在应激反应中的重要性。
    Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤血管生成,支持肿瘤生长和转移的新血管的形成,是由多种信号通路调节的复杂过程。涉及蛋白激酶的信号通路的失调已经被广泛研究,但是蛋白磷酸酶在肿瘤微环境中血管生成中的作用仍未被研究。然而,在血管生成途径中,蛋白磷酸酶在调节信号级联中起关键作用。本文综述了蛋白磷酸酶在肿瘤血管生成中的作用,突出它们的不同功能和行动机制。蛋白质磷酸酶通过催化蛋白质的去磷酸化作用,是细胞信号通路的关键调节因子。从而调节它们的活动和功能。这篇综述旨在评估蛋白质酪氨酸磷酸酶和丝氨酸/苏氨酸磷酸酶的活性。这些磷酸酶通过各种机制对血管生成信号通路发挥作用,包括血管生成受体和下游信号分子的直接去磷酸化。此外,蛋白磷酸酶也与参与血管生成的其他信号通路发生串扰,进一步强调它们在调节肿瘤血管化方面的重要性,包括内皮细胞存活,发芽,和血管成熟。总之,这篇综述强调了蛋白磷酸酶在肿瘤血管生成中的关键作用,并强调了它们作为肿瘤抗血管生成治疗靶点的潜力.
    Tumor angiogenesis, the formation of new blood vessels to support tumor growth and metastasis, is a complex process regulated by a multitude of signaling pathways. Dysregulation of signaling pathways involving protein kinases has been extensively studied, but the role of protein phosphatases in angiogenesis within the tumor microenvironment remains less explored. However, among angiogenic pathways, protein phosphatases play critical roles in modulating signaling cascades. This review provides a comprehensive overview of the involvement of protein phosphatases in tumor angiogenesis, highlighting their diverse functions and mechanisms of action. Protein phosphatases are key regulators of cellular signaling pathways by catalyzing the dephosphorylation of proteins, thereby modulating their activity and function. This review aims to assess the activity of the protein tyrosine phosphatases and serine/threonine phosphatases. These phosphatases exert their effects on angiogenic signaling pathways through various mechanisms, including direct dephosphorylation of angiogenic receptors and downstream signaling molecules. Moreover, protein phosphatases also crosstalk with other signaling pathways involved in angiogenesis, further emphasizing their significance in regulating tumor vascularization, including endothelial cell survival, sprouting, and vessel maturation. In conclusion, this review underscores the pivotal role of protein phosphatases in tumor angiogenesis and accentuate their potential as therapeutic targets for anti-angiogenic therapy in cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖尿病(DM)会增加认知障碍和阿尔茨海默病(AD)的风险。糖尿病酮症酸中毒(DKA),严重的糖尿病并发症,也可能导致脑损伤和进一步的AD,但潜在的分子机制仍不清楚。
    我们的目的是了解DKA如何促进AD中的神经变性。
    我们通过腹腔注射链脲佐菌素诱导大鼠DKA,随后饥饿48小时,并研究了AD相关的大脑改变,重点是tau磷酸化。
    我们发现DKA在与AD相关的多个位点诱导tau蛋白过度磷酸化。对tau激酶和磷酸酶的研究表明,DKA诱导的tau过度磷酸化主要是通过激活c-JunN末端激酶和下调蛋白磷酸酶2A介导的。在DKA大鼠的大脑中还观察到mTOR-AKT(雷帕霉素-蛋白激酶B的机制靶标)信号通路的破坏和突触蛋白水平的升高。
    这些结果揭示了DKA可能增加AD风险的机制。
    UNASSIGNED: Diabetes mellitus (DM) increases the risk for cognitive impairment and Alzheimer\'s disease (AD). Diabetic ketoacidosis (DKA), a serious complication of DM, may also cause brain damage and further AD, but the underlying molecular mechanisms remain unclear.
    UNASSIGNED: Our objective was to understand how DKA can promote neurodegeneration in AD.
    UNASSIGNED: We induced DKA in rats through intraperitoneal injection of streptozotocin, followed by starvation for 48 hours and investigated AD-related brain alterations focusing on tau phosphorylation.
    UNASSIGNED: We found that DKA induced hyperphosphorylation of tau protein at multiple sites associated with AD. Studies of tau kinases and phosphatases suggest that the DKA-induced hyperphosphorylation of tau was mainly mediated through activation of c-Jun N-terminal kinase and downregulation of protein phosphatase 2A. Disruption of the mTOR-AKT (the mechanistic target of rapamycin-protein kinase B) signaling pathway and increased levels of synaptic proteins were also observed in the brains of rats with DKA.
    UNASSIGNED: These results shed some light on the mechanisms by which DKA may increase the risk for AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质磷酸酶主要负责信号转导途径内的去磷酸化修饰。再生肝磷酸酶-3(PRL-3)是与癌症发病机制有关的双特异性磷酸酶。了解PRL-3的复杂功能和开发靶向治疗对于推进癌症治疗至关重要。这篇综述强调了其监管机制,表达模式,以及在癌症进展中的多方面作用。PRL-3参与扩散,迁移,入侵,转移,血管生成,并讨论了耐药性。调控机制包括转录控制,交替拼接,和翻译后修饰。PRL-3在特定癌症类型中表现出选择性表达,使其成为治疗的潜在目标。尽管小分子抑制剂取得了进展,临床应用还需要进一步的研究。PRL-3-zumab,人源化抗体,在临床前研究和临床试验中显示出希望。我们的综述总结了目前对PRL-3的癌症相关细胞功能,其预后价值,以及治疗性抑制剂的研究进展。
    Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3\'s intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3\'s involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在真核和原核细胞中,自组织和可兴奋的信号活动在广泛的细胞功能中起着重要作用。小区需要信令网络在它们之间进行通信,也是对环境线索的反应。这样的信号涉及可以作为振荡或波传播的复杂的空间和时间环路。当网柄菌变得缺乏营养时,局部空间内的细胞开始分泌cAMP。饥饿的细胞也变得对cAMP具有趋化性。cAMP信号传播为向外移动的波,以6分钟的间隔振荡,这为集中式小区聚合创建了一个集中的领土区域。近端细胞向内向cAMP源移动,并向外传递cAMP以招募其他细胞。为了确保定向向内移动和向外移动cAMP继电器,对于cAMP合成/降解和定向细胞运动,细胞都经历适应和去适应状态。尽管许多调节cAMP信号传导的直接成分(包括受体,G蛋白,腺苷酸环化酶,磷酸二酯酶,和蛋白激酶)是已知的,其他人只是推断。这里,使用生化实验和基因失活研究,我们建模一个集成的大型,涉及激活的多组分动力学途径,失活(适应),再激活(再敏化),前馈,和反馈控制以产生发育cAMP振荡。
    Self-organized and excitable signaling activities play important roles in a wide range of cellular functions in eukaryotic and prokaryotic cells. Cells require signaling networks to communicate amongst themselves, but also for response to environmental cues. Such signals involve complex spatial and temporal loops that may propagate as oscillations or waves. When Dictyostelium become starved for nutrients, cells within a localized space begin to secrete cAMP. Starved cells also become chemotactic to cAMP. cAMP signals propagate as outwardly moving waves that oscillate at ∼6 min intervals, which creates a focused territorial region for centralized cell aggregation. Proximal cells move inwardly toward the cAMP source and relay cAMP outwardly to recruit additional cells. To ensure directed inward movement and outward cAMP relay, cells go through adapted and de-adapted states for both cAMP synthesis/degradation and for directional cell movement. Although many immediate components that regulate cAMP signaling (including receptors, G proteins, an adenylyl cyclase, phosphodiesterases, and protein kinases) are known, others are only inferred. Here, using biochemical experiments coupled with gene inactivation studies, we model an integrated large, multi-component kinetic pathway involving activation, inactivation (adaptation), re-activation (re-sensitization), feed-forward, and feed-back controls to generate developmental cAMP oscillations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    世界范围内存在大量患有慢性肝病的患者。作为世界范围内发病率和死亡率高的疾病,加强对慢性肝病发病机制的研究和新型药物的开发是关系到全人类健康的重要课题。蛋白质的磷酸化修饰在细胞信号转导中起着至关重要的作用,和磷酸酶参与肝脏疾病的发展。因此,本文总结了蛋白磷酸酶在慢性肝病中的重要作用,旨在促进靶向蛋白磷酸酶治疗慢性肝病的药物的开发。
    There exists a huge number of patients suffering from chronic liver disease worldwide. As a disease with high incidence and mortality worldwide, strengthening the research on the pathogenesis of chronic liver disease and the development of novel drugs is an important issue related to the health of all human beings. Phosphorylation modification of proteins plays a crucial role in cellular signal transduction, and phosphatases are involved in the development of liver diseases. Therefore, this article summarized the important role of protein phosphatases in chronic liver disease with the aim of facilitating the development of drugs targeting protein phosphatases for the treatment of chronic liver disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质磷酸化,最常见和最重要的翻译后修饰,属于植物中至关重要的调控机制,影响他们的新陈代谢,细胞内运输,细胞结构,细胞分裂,增长,发展,以及与环境的互动。蛋白激酶和磷酸酶,优化调节磷酸化的两个重要的酶家族,现在已经成为作物基因编辑的重要目标。我们回顾了使用成簇的规则间隔短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)在作物中进行基因编辑的蛋白激酶和磷酸酶的进展。我们还为功能变化和/或变化的计算预测提供指导,活动,以及蛋白激酶和磷酸酶的结合是基于CRISPR/Cas9的基因编辑及其在可持续农业的现代作物分子育种中的可能应用的结果。
    Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Src-同源性-2(SH2)结构域选择性结合位于靶结合蛋白中的磷酸酪氨酸(pTyr)残基;因此,它们是pTyr介导的信号通路的关键要素。SH2结构域与pTyr的结合作为一种对接机制,吸引蛋白质进入信号中枢,在某些情况下,它还可以调节信号酶如蛋白激酶或蛋白磷酸酶的催化活性。因此,选择性结合SH2结构域的化合物可潜在地用于调节此类含SH2结构域的酶的活性。本章介绍了如何通过肽与SH2结构域的变构结合来测量蛋白酪氨酸磷酸酶活性的调节,并以从细菌中纯化的人重组蛋白酪氨酸磷酸酶SHP2(含Src同源-2结构域的蛋白酪氨酸磷酸酶2)为例。在存在以不同浓度选择性结合和激活SHP2的肽的情况下,随时间测量针对人工底物DiFMUP(6,8-二氟-4-甲基伞形基磷酸酯)的磷酸酶活性,以确定半数最大有效浓度(EC50)。
    Src-homology-2 (SH2) domains bind selectively to phosphotyrosine (pTyr) residues located in target binding proteins; therefore, they are key elements in pTyr-mediated signaling pathways. The binding of an SH2 domain to a pTyr acts as a docking mechanism that attracts proteins into signaling hubs, and in some cases, it can also regulate the catalytic activity of signaling enzymes such as protein kinases or protein phosphatases. Therefore, compounds that selectively bind SH2 domains can be potentially used to modulate the activity of such SH2 domain-containing enzymes. This chapter describes how to measure the regulation of protein tyrosine phosphatase activity through allosteric binding of peptides to SH2 domains, and uses human recombinant protein tyrosine phosphatase SHP2 (Src homology-2 domain-containing protein tyrosine phosphatase 2) purified from bacteria as a case example. The phosphatase activity against the artificial substrate DiFMUP (6, 8-Difluoro-4-Methylumbelliferyl Phosphate) is measured over time in the presence of a peptide that selectively binds and activates SHP2 at different concentrations to determine the half maximal effective concentration (EC50).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于蛋白质磷酸酶的治疗性靶向的新兴策略涉及使用干扰调节亚基或底物的结合的化合物。然而,这种干扰分子的高通量筛选策略很少。这里,我们报道了将NanoBiT分裂荧光素酶系统转化为用于定量细胞裂解物中磷酸酶亚基和底物相互作用的强大测定法。该测定法适合于筛选干扰化合物的小分子文库。我们为广泛的PP1和PP2A全酶设计并验证了分裂荧光素酶传感器,包括选择性报告弱交互站点的传感器。为了促进大规模筛查活动中的有效分类,开发了取消选择程序,以高保真地消除检测干扰分子。作为一个原则证明,我们成功地应用分裂荧光素酶筛选工具来鉴定PP1βC端与肌球蛋白磷酸酶靶向亚基MYPT1的锚蛋白重复结构域之间相互作用的小分子干扰物.
    An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1β and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质磷酸化是调节生命所有领域的广泛细胞反应的通用机制。激酶和磷酸酶的拮抗活性可以协调生物体的生命周期。细菌基因组序列的可用性,特别是芽孢杆菌,其次是蛋白质组学和功能研究有助于鉴定推定的蛋白激酶和蛋白磷酸酶,和它们的下游底物。一些研究已经确立了磷酸化在芽孢杆菌属物种的不同生理状态中的作用,因为它们通过不同的生命阶段,如孢子形成。发芽,和生物膜的形成。芽孢杆菌蛋白中最常见的磷酸化位点是组氨酸,天冬氨酸,酪氨酸,丝氨酸,苏氨酸,和精氨酸残基。蛋白质磷酸化可以改变蛋白质的活性,结构构象和蛋白质-蛋白质相互作用,最终影响下游途径。在这次审查中,我们总结了芽孢杆菌信号领域的知识,重点研究蛋白质磷酸化在其生理过程中的作用。
    Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号