poly(lactic-co-glycolic acid)

聚乳酸 - 乙醇酸共聚物
  • 文章类型: Journal Article
    局部递送血管生成促进因子,如小分子,核酸,肽,和蛋白质促进受损组织的修复和再生仍然是血管组织工程的挑战。目前的递送方法如治疗剂的直接施用可能无法维持必要的持续释放曲线,并且通常依赖于超生理剂量来实现期望的治疗效果。通过实施微粒输送系统,局部递送可以与持续受控释放相结合,以减轻目前直接治疗给药所需的高剂量所涉及的风险。为此,聚(乳酸-共-乙醇酸)微粒是通过反溶剂微囊化和负载,释放,和模型血管生成分子的传递,特别是一个小分子,核酸,和蛋白质,使用微血管碎片(MVF)在体外评估。使用的微囊化方法能够快速形成球形颗粒并封装不同大小的模型药物,所有在一个方法。添加纤维蛋白支架,MVF文化所需的,减少了模型药物的初始爆发,在单独的PLGA的释放曲线中观察到。最后,使用MVFs的体外研究表明,更高浓度的微粒导致模型治疗(miRNA)与MVFs的更多共定位,这对于有针对性的交付方法至关重要。还发现,与直接施用相比,使用递送的微粒系统的miRNA的生物分布增强。总的来说,聚(乳酸-乙醇酸共聚物)微粒,一步配制和加载模型治疗化合物,改善了血管模型中的生物分布,从而导致了翻译血运重建的未来。
    BACKGROUND: Localized delivery of angiogenesis-promoting factors such as small molecules, nucleic acids, peptides, and proteins to promote the repair and regeneration of damaged tissues remains a challenge in vascular tissue engineering. Current delivery methods such as direct administration of therapeutics can fail to maintain the necessary sustained release profile and often rely on supraphysiologic doses to achieve the desired therapeutic effect. By implementing a microparticle delivery system, localized delivery can be coupled with sustained and controlled release to mitigate the risks involved with the high dosages currently required from direct therapeutic administration.
    METHODS: For this purpose, poly(lactic-co-glycolic acid) (PLGA) microparticles were fabricated via anti-solvent microencapsulation and the loading, release, and delivery of model angiogenic molecules, specifically a small molecule, nucleic acid, and protein, were assessed in vitro using microvascular fragments (MVFs).
    RESULTS: The microencapsulation approach utilized enabled rapid spherical particle formation and encapsulation of model drugs of different sizes, all in one method. The addition of a fibrin scaffold, required for the culture of the MVFs, reduced the initial burst of model drugs observed in release profiles from PLGA alone. Lastly, in vitro studies using MVFs demonstrated that higher concentrations of microparticles led to greater co-localization of the model therapeutic (miRNA) with MVFs, which is vital for targeted delivery methods. It was also found that the biodistribution of miRNA using the delivered microparticle system was enhanced compared to direct administration.
    CONCLUSIONS: Overall, PLGA microparticles, formulated and loaded with model therapeutic compounds in one step, resulted in improved biodistribution in a model of the vasculature leading to a future in translational revascularization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    靶向α治疗(TAT)依赖于使用放射免疫缀合物的化学亲和力或主动靶向作为将α发射放射性核素递送至癌组织的策略。这些策略可能会受到母体放射性核素通过体内竞争离子和衰变子体的键断裂反冲能量的金属转移的影响。α发射放射性核素的保留和递送至癌细胞的剂量受这些过程的影响。将α发射放射性核素封装在纳米颗粒内可以帮助克服许多这些挑战。聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒是已用于药物递送的可生物降解且生物相容的递送平台。在这项研究中,PLGA纳米颗粒被用于包封和保留act-225([225Ac]Ac3+)。[225Ac]Ac3+在PLGA纳米颗粒(Zave=155.3nm)内的包封是通过采用双乳液溶剂蒸发方法实现的。包封效率受溶剂条件和[225Ac]Ac3的螯合作用的影响。[225Ac]Ac3+与亲脂性2,9-双内酰胺-1,10-菲咯啉配体([225Ac]AcBLPhen)的螯合显著降低了其从PLGA纳米颗粒的释放(<2%)和其衰变子体(<50%)。包封[225Ac]AcBLPhen的PLGA纳米颗粒显著增加了[225Ac]Ac3+向鼠(E0771)和人(MCF-7和MDA-MB-231)乳腺癌细胞的递送,与溶液中的游离[225Ac]Ac3+相比,细胞死亡伴随增加。这些结果证明PLGA纳米颗粒具有作为TAT的放射性核素递送平台以推进癌症的精确放射治疗的潜力。此外,该技术为水溶性差的配体提供了替代用途,稳定性低,或低亲和力,允许它们通过封装在PLGA纳米颗粒中而被重新用于TAT。
    Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:双氯芬酸钠(DS)和塞来昔布(CEL)是用于治疗骨关节炎(OA)的主要抗炎药。将这些药物配制成延长释放版本可以有效地解决多个每日剂量的问题。在这项研究中,我们设计并合成了一种新型的聚乳酸-乙醇酸共聚物(PLGA)纳米脂质体作为双药缓释制剂(PPLs-DS-CEL),以实现DS和CEL对OA的长期协同治疗.
    方法:通过反向蒸发法合成了PPLs-DS-CEL,并评估了其理化性质,封装效率,药物释放动力学和生物学特性。建立大鼠OA模型以评估PPLs-DS-CEL的治疗效果和生物安全性。
    结果:PPLs-DS-CEL的粒径为218.36±6.27nm,潜力为32.56±3.28mv,表明均匀的囊泡大小。PPLs-DS-CEL对DS和CEL的包封率分别为95.18±4.43%和93.63±5.11%,载药量分别为9.56±0.32%和9.68±0.34%,分别。PPLs-DS-CEL表现出低细胞毒性和溶血,并能通过缓释DS和CEL在OA中实现持久的协同镇痛和抗炎治疗作用,表现出良好的生物安全特性。
    结论:本研究开发了一种新型的缓释纳米脂质体制剂,能够共负载两种药物,用于OA的长效协同治疗。它为临床环境中的OA治疗提供了一种新的有效的治疗策略,并为药物递送系统提供了一种有前途的方法。
    BACKGROUND: Diclofenac sodium (DS) and celecoxib (CEL) are primary anti-inflammatory agents used in the treatment of osteoarthritis (OA). Formulating these drugs into extended-release versions can effectively address the issue of multiple daily doses. In this study, we designed and synthesized a novel poly(lactic-co-glycolic acid) (PLGA) nanoliposome as a dual-drug delivery sustained-release formulation (PPLs-DS-CEL) to achieve long-lasting synergistic treatment of OA with both DS and CEL.
    METHODS: PPLs-DS-CEL was synthesized by the reverse evaporation method and evaluated for its physicochemical properties, encapsulation efficiency, drug release kinetics and biological properties. A rat OA model was established to assess the therapeutic efficacy and biosafety of PPLs-DS-CEL.
    RESULTS: The particle size of PPLs-DS-CEL was 218.36 ± 6.27 nm, with a potential of 32.56 ± 3.28 mv, indicating a homogeneous vesicle size. The encapsulation of DS and CEL by PPLs-DS-CEL was 95.18 ± 4.43% and 93.63 ± 5.11%, with drug loading of 9.56 ± 0.32% and 9.68 ± 0.34%, respectively. PPLs-DS-CEL exhibited low cytotoxicity and hemolysis, and was able to achieve long-lasting synergistic analgesic and anti-inflammatory therapeutic effects in OA through slow release of DS and CEL, demonstrating good biosafety properties.
    CONCLUSIONS: This study developed a novel sustained-release nanoliposomes formulation capable of co-loading two drugs for the long-acting synergistic treatment of OA. It offers a new and effective therapeutic strategy for OA treatment in the clinic settings and presents a promising approach for drug delivery systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    抗生素耐药性的出现使得细菌感染的治疗变得困难并且需要开发替代策略。靶向药物递送系统在克服传统抗生素的局限性方面引起了极大的兴趣。这里,我们旨在通过用合成的P6.2肽装饰RFX负载的聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒(NP)来靶向递送利福昔明(RFX),首次用作靶向剂。我们的结果表明,将RFX封装到NP中通过改善其溶解度和提供受控释放来增加其抗菌活性,而P6.2修饰允许将NP靶向金黄色葡萄球菌细菌细胞。一种有希望的治疗细菌感染的方法,这些P6.2缀合的RFX负载的PLGANP(TR-NP)对金黄色葡萄球菌的两种菌株均表现出有效的抗菌活性。负载RFX的PLGANP(R-NP)的抗菌活性显示出显着的结果,与游离RFX相比,对金黄色葡萄球菌和MRSA分别增加了8和16倍,分别。此外,发现靶向纳米颗粒的活性增加了32或16倍,MBC值为0.0078μg/mL。发现所有纳米颗粒在它们显示抗微生物活性的剂量下是生物相容的。最后,它揭示了P6.2缀合的靶向纳米颗粒在金黄色葡萄球菌而不是大肠杆菌中极端积累。
    The emergence of antibiotic resistance makes the treatment of bacterial infections difficult and necessitates the development of alternative strategies. Targeted drug delivery systems are attracting great interest in overcoming the limitations of traditional antibiotics. Here, we aimed for targeted delivery of rifaximin (RFX) by decorating RFX-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) with synthetic P6.2 peptide, which was used as a targeting agent for the first time. Our results showed that encapsulation of RFX into NPs increased its antibacterial activity by improving its solubility and providing controlled release, while P6.2 modification allowed targeting of NPs to S. aureus bacterial cells. A promising therapeutic approach for bacterial infections, these P6.2-conjugated RFX-loaded PLGA NPs (TR-NP) demonstrated potent antibacterial activity against both strains of S. aureus. The antibacterial activity of RFX-loaded PLGA NPs (R-NP) showed significant results with an increase of 8 and 16-fold compared to free RFX against S. aureus and MRSA, respectively. Moreover, the activity of targeted nanoparticles was found to be increased 32 or 16-fold with an MBC value of 0.0078 μg/mL. All nanoparticles were found to be biocompatible at doses where they showed antimicrobial activity. Finally, it revealed that P6.2-conjugated targeted nanoparticles extremely accumulated in S. aureus rather than E. coli.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    药物洗脱隐形眼镜(DECL)与聚(乳酸-乙醇酸共聚物)(PLGA)和各种模型药物(富马酸酮替芬,比马前列素和拉坦前列素)是使用纳米电喷雾(nES)方法制造的。所得的DECLs在光学区内表现出出色的光学透射率,表明在规定的喷涂参数下,采用的涂层程序不会损害视力。模型药物(富马酸酮替芬(KF),比马前列素(BIM),和拉坦前列素(LN))揭示了模型药物的疏水性与药物释放持续时间之间的强相关性。改变更亲水的模型药物的载药量,BIM和KF,显示对负载有BIM和KF的DECL的药物释放动力学没有影响。然而,对于疏水模型药物,LN,最高的LN负载导致最延长的药物释放。发现常规蒸汽灭菌方法会损坏nES制造的DECL上的PLGA涂层。另一种绝育策略,例如辐射消毒可能需要在未来的研究中进行研究,以尽量减少对涂层的潜在伤害。
    Drug-eluting contact lenses (DECLs) incorporated with poly(lactic-co-glycolic acid) (PLGA) and various model drugs (ketotifen fumarate, bimatoprost and latanoprost) were fabricated using nanoelectrospray (nES) approach. The resulting DECLs demonstrated outstanding optical transmittance within the optical zone, indicating that the employed coating procedure did not compromise visual acuity under the prescribed spraying parameters. In vitro drug release assessments of the model drugs (ketotifen fumarate (KF), bimatoprost (BIM), and latanoprost (LN)) revealed a strong correlation between the model drug\'s hydrophobicity and the duration of drug release. Changing the drug loading of the more hydrophilic model drugs, BIM and KF, showed no impact on the drug release kinetics of DECLs loaded with BIM and KF. However, for the hydrophobic model drug, LN, the highest LN loading led to the most extended drug release. The conventional steam sterilisation method was found to damage the PLGA coating on the DECLs fabricated by nES. An alternative sterilisation strategy, such as radiation sterilisation may need to be investigated in the future study to minimise potential harm to the coating.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大麻二酚(CBD)是大麻中发现的最相关的非精神兴奋剂植物化合物。CBD已被广泛研究,并已被提议作为神经炎症相关病症的治疗候选物。然而,作为一种高度亲脂性的药物,它在制药方面有几个缺点,包括低溶解度和高渗透性。合成聚合物可用作药物递送系统,以提高CBD的稳定性,半衰期,和生物分布。这里,我们建议使用合成聚合物作为CBD(NPCBD)的纳米颗粒载体来克服游离药物的药理学缺点。我们在原发性皮质细胞(PCC)的相关氧和葡萄糖剥夺(OGD)模型中,在缺血事件的背景下测试了NPCBD工程化系统。此外,我们已经描述了相关细胞类型的炎症反应,如THP-1(人单核细胞),HMC3(人类小胶质细胞),PCC,NPCBD,并观察到缺血事件后处理细胞的炎症状态的转变。此外,NPCBD在低剂量1和0.2μMCBD的HMC3和PCC细胞中表现出在OGD损伤后恢复线粒体功能的有希望的能力。一起来看,这些结果提示了临床前应用的潜力.
    Cannabidiol (CBD) is the most relevant nonpsychostimulant phytocompound found in Cannabis sativa. CBD has been extensively studied and has been proposed as a therapeutic candidate for neuroinflammation-related conditions. However, being a highly lipophilic drug, it has several drawbacks for pharmaceutical use, including low solubility and high permeability. Synthetic polymers can be used as drug delivery systems to improve CBD\'s stability, half-life, and biodistribution. Here, we propose using a synthetic polymer as a nanoparticulate vehicle for CBD (NPCBD) to overcome the pharmacological drawbacks of free drugs. We tested the NPCBD-engineered system in the context of ischemic events in a relevant oxygen and glucose deprivation (OGD) model in primary cortical cells (PCC). Moreover, we have characterized the inflammatory response of relevant cell types, such as THP-1 (human monocytes), HMC3 (human microglia), and PCC, to NPCBD and observed a shift in the inflammatory state of the treated cells after the ischemic event. In addition, NPCBD exhibited a promising ability to restore mitochondrial function after OGD insult in both HMC3 and PCC cells at low doses of 1 and 0.2 μM CBD. Taken together, these results suggest the potential for preclinical use.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过烯烃过渡金属(TM)聚合催化获得的聚合物材料的低可回收性百分比增加了用具有可靠物理和机械性能的更环保材料代替它们的兴趣。在各种已知的生物可降解聚合物中,通过环状酯的开环聚合(ROP)生产的线性脂肪族聚酯占据突出的位置。聚合物的性能高度依赖于大分子的微观结构,并且立体选择性的控制对于提供具有精确和精细调节的材料是必要的。在这次审查中,我们的目标是概述主要的合成路线,三种市售可生物降解材料的物理性质和应用:聚乳酸(PLA),聚(乳酸-共-乙醇酸)(PLGA),和聚(3-羟基丁酸)(P3HB),所有三个都可以通过ROP轻松访问。在这个框架中,了解对映选择性的起源和决定它的因素,然后是至关重要的材料具有合适的热和机械性能的发展。
    The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    手术部位和其他伤口的微生物感染是患者的主要障碍。在预防感染的同时促进组织修复的多功能低成本敷料引起了医学专业人员的极大兴趣。这里,将粘土基锂皂石纳米盘(LAP)加载抗菌药物卡那霉素(KANA),然后嵌入聚(乳酸-乙醇酸共聚物)(PLGA)膜并用生物聚合物壳聚糖(CS)涂覆。结果表明,这些生物相容性材料结合了LAP控制药物释放的优异能力与PLGA的机械坚固性和CS的抗菌性能以及其亲水性,形成了非常适合作为感染预防伤口敷料的复合材料。体外,PLGA/LAP/KANA/CS以持续30d的方式释放药物,完全抑制传染性细菌的生长,促使成纤维细胞粘连,加速了1.3倍的扩散。在体内,复合材料使感染的全层皮肤伤口快速愈合,14d后收缩96.19%。在愈合过程中,PLGA/LAP/KANA/CS刺激上皮再生,减少炎症,并促进血管生成和致密胶原纤维的形成,最终胶原蛋白体积比为89.27%。因此,由低成本组件制成的多功能PLGA/LAP/KANA/CS证明了其治疗感染皮肤伤口的潜力。
    Microbial infections of surgical sites and other wounds represent a major impediment for patients. Multifunctional low-cost dressings promoting tissue reparation while preventing infections are of great interest to medical professionals. Here, clay-based laponite nanodiscs (LAP) were loaded with the antibacterial drug kanamycin (KANA) before being embedded into a poly(lactic-co-glycolic acid) (PLGA) membrane and coated with the biopolymer chitosan (CS). Results indicated that these biocompatible materials combined the excellent capacity of LAP for controlled drug release with the mechanical robustness of PLGA and the antibacterial properties of CS as well as its hydrophilicity to form a composite highly suitable as an infection-preventing wound dressing. In vitro, PLGA/LAP/KANA/CS released drugs in a sustainable manner over 30 d, completely inhibited the growth of infectious bacteria, prompted the adhesion fibroblasts, and accelerated their proliferation 1.3 times. In vivo, the composite enabled the fast healing of infected full-thickness skin wounds with a 96.19 % contraction after 14 d. During the healing process, PLGA/LAP/KANA/CS stimulated re-epithelization, reduced inflammation, and promoted both angiogenesis and the formation of dense collagen fibers with an excellent final collagen volume ratio of 89.27 %. Thus, multifunctional PLGA/LAP/KANA/CS made of low-cost components demonstrated its potential for the treatment of infected skin wounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    L-鸟氨酸和L-谷氨酰胺是用于在人体内运输氨和氮的氨基酸。通过与L-鸟氨酸或L-谷氨酰胺缀合合成了新型可生物降解的合成聚(乳酸-羟基乙酸共聚物)衍生物,由于其生物学重要性而被选中。在通过丙交酯和乙交酯的缩聚和开环聚合合成PLGA之后,将L-鸟氨酸或L-谷氨酰胺与作为结构显影剂的EDC偶联反应整合到PLGA聚合物中。化学,热,和PLGA的降解性质-结构关系,PLGA-L-鸟氨酸,和PLGA-L-谷氨酰胺被鉴定。通过在13CNMR光谱中170-160ppm范围内的羰基碳数目的增加和在FTIR光谱中在约1698cm-1处的酰胺羰基振动信号的观察,证实了PLGA与氨基酸之间的缀合。所开发的PLGA-L-鸟氨酸和PLGA-L-谷氨酰胺衍生物是热稳定的高能材料。此外,PLGA-L-鸟氨酸和PLGA-L-谷氨酰胺,具有独特的亲水性,在表面型侵蚀方面比PLGA具有更快的降解时间,这涵盖了他们的要求。L-鸟氨酸和L-谷氨酰胺连接的PLGA是开发可生物降解的PLGA衍生的生物聚合物的潜在候选者,可用作生物材料的原料。
    L-ornithine and L-glutamine are amino acids used for ammonia and nitrogen transport in the human body. Novel biodegradable synthetic poly(lactic-co-glycolic acid) derivatives were synthesized via conjugation with L-ornithine or L-glutamine, which were selected due to their biological importance. L-ornithine or L-glutamine was integrated into a PLGA polymer with EDC coupling reactions as a structure developer after the synthesis of PLGA via the polycondensation and ring-opening polymerization of lactide and glycolide. The chemical, thermal, and degradation property-structure relationships of PLGA, PLGA-L-ornithine, and PLGA-L-glutamine were identified. The conjugation between PLGA and the amino acid was confirmed through observation of an increase in the number of carbonyl carbons in the range of 170-160 ppm in the 13C NMR spectrum and the signal of the amide carbonyl vibration at about 1698 cm-1 in the FTIR spectrum. The developed PLGA-L-ornithine and PLGA-L-glutamine derivatives were thermally stable and energetic materials. In addition, PLGA-L-ornithine and PLGA-L-glutamine, with their unique hydrophilic properties, had faster degradation times than PLGA in terms of surface-type erosion, which covers their requirements. L-ornithine- and L-glutamine-linked PLGAs are potential candidates for development into biodegradable PLGA-derived biopolymers that can be used as raw materials for biomaterials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氯硝柳胺(NIC)是一种多功能药物,可调节各种信号通路和生物过程。它被广泛用于治疗癌症,病毒感染,和代谢紊乱。然而,它的低水溶性限制了它的功效。在这项研究中,聚(乳酸-乙醇酸)(PLGA)和透明质酸(HA),表现出良好的生物相容性,生物降解性,和非免疫原性,采用微流控技术与氯硝柳胺偶联制备PLGA-HA-氯硝柳胺聚合物纳米颗粒(NIC@PLGA-HA)。获得的微球具有均匀的尺寸分布,平均尺寸为442.0±18.8nm,zeta电位为-25.4±0.41mV,表明它们在水中的稳定分散。载药效率为8.70%。载药微球在pH7.4和5.0时表现出持续释放行为,但在pH2.0时则没有,药物释放动力学由准一级动力学方程描述。用MTT法检测载药微球对Caco-2细胞增殖的影响。通过微流体技术制备的亲水性HA修饰的NIC@PLGA-HA微球增加了Caco-2细胞的细胞摄取。与相同浓度的NIC相比,由于PLGA的联合作用,NIC@PLGA-HA微球对Caco-2细胞表现出更强的抑制作用,HA,和NIC。因此,微流体技术合成的pH响应型NIC@PLGA-HA微球增加了NIC的溶解度,提高了其生物活性,从而促进了对肠道药物载体的需求。
    Niclosamide (NIC) is a multifunctional drug that regulates various signaling pathways and biological processes. It is widely used for the treatment of cancer, viral infections, and metabolic disorders. However, its low water solubility limits its efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) and hyaluronic acid (HA), which exhibit good biocompatibility, biodegradability, and non-immunogenicity, were conjugated with niclosamide to prepare PLGA-HA-niclosamide polymeric nanoparticles (NIC@PLGA-HA) using microfluidic technology. The obtained microspheres had a uniform size distribution, with an average mean size of 442.0 ± 18.8 nm and zeta potential of -25.4 ± 0.41 mV, indicating their stable dispersion in water. The drug-loading efficiency was 8.70%. The drug-loaded microspheres showed sustained release behavior at pH 7.4 and 5.0, but not at pH 2.0, and the drug release kinetics were described by a quasi-first-order kinetic equation. The effect of the drug-loaded microspheres on the proliferation of Caco-2 cells was detected using the MTT assay. Hydrophilic HA-modified NIC@PLGA-HA microspheres prepared via microfluidic technology increased the cellular uptake by Caco-2 cells. Compared to the same concentration of NIC, the NIC@PLGA-HA microspheres demonstrated a stronger inhibitory effect on Caco-2 cells owing to the combined effect of PLGA, HA, and NIC. Therefore, the pH-responsive NIC@PLGA-HA microspheres synthesized using microfluid technology increased the solubility of NIC and improved its biological activity, thus contributing to the demand for intestinal drug carriers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号