plasmodesmata

等离子体
  • 文章类型: Journal Article
    受精依赖于能够从有丝分裂过渡到减数分裂以供应配子的花粉母细胞。这个过程涉及分子的显著变化,细胞和生理水平,包括(但不限于)细胞壁的重塑。在减数分裂发作期间,随着多糖call的同时沉积在花药小室中,花粉母细胞壁上的纤维素含量逐渐下降。我们旨在通过对水稻花的电子显微镜分析来了解花粉母细胞壁中纤维素到call的周转的生物学意义。我们的观察表明,在野生型水稻花药中,有丝分裂到减数分裂的转变与胞质连接的数量逐渐减少同时发生。水稻callose合酶GSL5(Osgsl5-3)中的突变体,减数分裂前期和减数分裂花药中call的积累受损,在花粉母细胞和绒毡层细胞中显示出胞浆频率的降低幅度更大,表明call骨在胞浆维持中的作用。此外,在Osgsl5-3突变体中观察到花粉母细胞之间的细胞外距离显着增加和减数分裂前细胞形状受损。结果表明,有丝分裂-减数分裂过渡过程中call的call的纤维素转化对于维持中央花药室细胞之间的细胞间连接和最佳的细胞外距离是必要的。这项研究的结果有助于我们理解开花植物减数分裂过程中call体代谢的调节作用。
    Fertilization relies on pollen mother cells able to transit from mitosis to meiosis to supply gametes. This process involves remarkable changes at the molecular, cellular and physiological levels including (but not limited to) remodelling of the cell wall. During the meiosis onset, cellulose content at the pollen mother cell walls gradually declines with the concurrent deposition of the polysaccharide callose in anther locules. We aim to understand the biological significance of cellulose-to-callose turnover in pollen mother cells walls using electron microscopic analyses of rice flowers. Our observations indicate that in wild type rice anthers, the mitosis-to-meiosis transition coincides with a gradual reduction in the number of cytoplasmic connections called plasmodesmata. A mutant in the Oryza sativa callose synthase GSL5 (Osgsl5-3), impaired in callose accumulation in premeiotic and meiotic anthers, displayed a greater reduction in plasmodesmata frequency among pollen mother cells and tapetal cells suggesting a role for callose in plasmodesmata maintenance. In addition, a significant increase in extracellular distance between pollen mother cells and impaired premeiotic cell shaping was observed in the Osgsl5-3 mutant. The results suggest that callose-to-cellulose turnover during mitosis-meiosis transition is necessary to maintain cell-to-cell connections and optimal extracellular distance among the central anther locular cells. Findings of this study contribute to our understanding of the regulatory influence of callose metabolism during meiosis initiation in flowering plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物细胞的生长取决于膨胀压力,细胞流体动力学压力,驱动细胞外基质(细胞壁)的扩张。涡轮压力调节取决于几个物理,化学,和生物因素,包括液泡转化酶,调节细胞的渗透压,水通道蛋白,决定了质膜对水的渗透性,细胞壁重塑因子,决定细胞壁的延展性(有效粘度的倒数),和等离子体,它们是膜衬里通道,允许水和溶质在相邻细胞的细胞质之间自由移动,比如动物的缝隙连接.在植物发育过程中,浆膜通透性会发生变化,实验研究已将浆膜通道的通透性变化与膨大压力变化相关。这里,我们研究了细胞质膜通透性在棉纤维生长中的作用,一种细胞,在几周内长度增加至少三个数量级。我们将水和溶质的胞浆细胞依赖性运动纳入了植物细胞扩增的经典模型。我们对模型参数值的变化进行了敏感性分析,发现浆膜渗透率是增加膨大压力和膨胀棉纤维的最重要因素之一。此外,我们发现,如果不考虑模型中使用的参数的动态变化,就无法恢复先前在棉纤维中报道的膨胀压力的非单调行为。总之,我们的结果提示,在膨压调节中,浆膜细胞通透性具有重要作用。
    Plant cell growth depends on turgor pressure, the cell hydrodynamic pressure, which drives expansion of the extracellular matrix (the cell wall). Turgor pressure regulation depends on several physical, chemical, and biological factors, including vacuolar invertases, which modulate osmotic pressure of the cell, aquaporins, which determine the permeability of the plasma membrane to water, cell wall remodeling factors, which determine cell wall extensibility (inverse of effective viscosity), and plasmodesmata, which are membrane-lined channels that allow free movement of water and solutes between cytoplasms of neighboring cells, like gap junctions in animals. Plasmodesmata permeability varies during plant development and experimental studies have correlated changes in the permeability of plasmodesmal channels to turgor pressure variations. Here, we study the role of plasmodesmal permeability in cotton fiber growth, a type of cell that increases in length by at least three orders of magnitude in a few weeks. We incorporated plasmodesma-dependent movement of water and solutes into a classical model of plant cell expansion. We performed a sensitivity analysis to changes in values of model parameters and found that plasmodesmal permeability is among the most important factors for building up turgor pressure and expanding cotton fibers. Moreover, we found that nonmonotonic behaviors of turgor pressure that have been reported previously in cotton fibers cannot be recovered without accounting for dynamic changes of the parameters used in the model. Altogether, our results suggest an important role for plasmodesmal permeability in the regulation of turgor pressure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物中的细胞间通讯,和其他多细胞生物一样,允许组织中的细胞协调它们对发育和对环境刺激的反应。这种交流的大部分是由platmodesmata(PD)促进的,由膜和细胞质组成,将相邻的细胞相互连接。PD长期以来一直被视为各种代谢物和分子货物流动的被动管道,但是这种看法在过去二十年左右的时间里一直在改变。过去几年的研究揭示了PD作为信号传导中心和激素信号传导中的关键参与者的重要性。采用先进的生化方法,分子工具和高分辨率成像模式最近在我们对PD作用的理解上取得了一些突破,揭示了这些“原生质连接线”的结构和监管复杂性。我们强调了其中一些发现,我们认为这些发现很好地说明了目前对PD在植物生理学关系中起作用的理解,发展,和适应环境。
    Intercellular communication in plants, as in other multicellular organisms, allows cells in tissues to coordinate their responses for development and in response to environmental stimuli. Much of this communication is facilitated by plasmodesmata (PD), consisting of membranes and cytoplasm, that connect adjacent cells to each other. PD have long been viewed as passive conduits for the movement of a variety of metabolites and molecular cargoes, but this perception has been changing over the last two decades or so. Research from the last few years has revealed the importance of PD as signaling hubs and as crucial players in hormone signaling. The adoption of advanced biochemical approaches, molecular tools and high-resolution imaging modalities have led to several recent breakthroughs in our understanding of the roles of PD, revealing the structural and regulatory complexity of these \'protoplasmic connecting threads\'. We highlight several of these findings that we think well illustrate the current understanding of PD as functioning at the nexus of plant physiology, development, and acclimation to the environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    正确调节细胞间通讯是细胞分化的基本要求。在拟南芥中,雌性种系区别于单个体细胞胚珠细胞,后者被β-1,3-葡聚糖包裹,一种与限制病原体入侵有关的水不溶性多糖,调节根中的细胞间运输,促进花粉发育。β-1,3-葡聚糖是否促进种系分离和发育一直存在争议,因为支持职能角色的证据有限。这里,相邻种系和体细胞的转录谱分析揭示了与β-1,3-葡聚糖代谢和通过细胞间通道(plasmodesmata)的信号传导相关的基因表达差异。β-1,3-葡聚糖酶在雌性种系短暂扰动的β-1,3-葡聚糖沉积物中的显性表达,允许示踪分子的细胞间运动,并导致种系基因表达和组蛋白标记的变化,最终导致种系发育的终止。我们的发现表明,种系β-1,3-葡聚糖通过隔离初级种系细胞在胚珠中发挥功能作用,从而决定了下游雌配子发生的成功。
    Correct regulation of intercellular communication is a fundamental requirement for cell differentiation. In Arabidopsis thaliana, the female germline differentiates from a single somatic ovule cell that becomes encased in β-1,3-glucan, a water insoluble polysaccharide implicated in limiting pathogen invasion, regulating intercellular trafficking in roots, and promoting pollen development. Whether β-1,3-glucan facilitates germline isolation and development has remained contentious, since limited evidence is available to support a functional role. Here, transcriptional profiling of adjoining germline and somatic cells revealed differences in gene expression related to β-1,3-glucan metabolism and signalling through intercellular channels (plasmodesmata). Dominant expression of a β-1,3-glucanase in the female germline transiently perturbed β-1,3-glucan deposits, allowed intercellular movement of tracer molecules, and led to changes in germline gene expression and histone marks, eventually leading to termination of germline development. Our findings indicate that germline β-1,3-glucan fulfils a functional role in the ovule by insulating the primary germline cell, and thereby determines the success of downstream female gametogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    结论:发育中的苔藓植物不同程度地修饰其胞浆结构和功能。通过孪生形成次生胞浆似乎是一种祖先性状。刺耳孢子体分生组织中的Plasmodesmata网络类似于被子植物。所有陆生植物类群都使用纤毛(PD)细胞连接进行共质通讯。在被子植物发育中,PD网络通过结构和功能PD修饰进行广泛的重塑,并通过细胞动力学后形成额外的继发性PD(secPD)。由于胚胎植物姐妹组缺乏关于PD动力学的可比信息,我们调查了Anthocerosagrestis(hornwort)的成熟组织,Physcomitriumpatens(moss),和Marchantiapolymorpha(紫草)。就像被子植物一样,定量电子显微镜显示所有模型苔藓的配子体通过孪生形成secPD,产生横向相邻的PD对或复杂的分支PD。这一发现表明,PD孪生是一种古老的进化机制,可以在墙体扩张过程中调整PD数量。此外,所有苔藓植物配子体都通过类似于被子植物的分类单元特异性策略来修饰其现有的PD。可能需要开发具有扩大直径或形成凹坑对的II型PD形态型,以保持壁增厚期间的PD传输速率。类似于被子植物叶,光漂白后的荧光重新分布表明,成熟的P.patensphyllids中的PD渗透性大大降低。与以前关于苔藓植物配子体的单重分生组织的报道相反,我们观察到在A.agrestis孢子体的多初始基础分生组织中形成有针对性的secPD。他们的PD网络共享多初始被子植物分生组织的典型特征,这可能暗示了推定的同源起源。我们还讨论了单重和多初始分生组织可能需要不同类型的PD网络,有或没有secPD形成,控制初始身份和位置信令的维护。
    CONCLUSIONS: Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胞浆是嵌入细胞壁内的跨膜通道,可以促进植物细胞间的通讯。与纤丝结合的纤丝结合蛋白(PDCB)有助于细胞壁延伸。鉴于棉纤维细胞的伸长与细胞壁的动力学相关,这种蛋白质可以与棉纤维的伸长有关。这项研究试图鉴定棉属中的PDCB家族成员。hirsutum基因组并阐明其表达谱。通过鉴定和筛选过程共观察到45个不同的家族成员。对其理化性质的分析揭示了大多数成员的氨基酸组成和分子量的相似性。系统发育分析促进了进化树的构建,将这些成员分为五组,主要分布在20条染色体上。精细的映射结果促进了第V组的组织特异性检查,显示GhPDCB9的表达水平在开花后五天达到峰值。VIGS实验导致基因表达水平显著下降,成熟纤维长度显著减少,平均缩短1.43-4.77毫米。结果表明,GhPDCB9在棉花纤维发育中起着举足轻重的作用,是提高棉花产量的候选材料。
    Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Callose,β-1,3-葡聚糖植物细胞壁聚合物,调节胞浆(PD)的胞质通道大小,并在各种植物过程中起着至关重要的作用。然而,阐明PDcall体内平衡的分子机制是有限的。我们筛选并鉴定了一个拟南芥突变体植物,该突变植物在PD处有过量的call体沉积,发现突变基因为α1-COP,外壳蛋白I(COPI)涂层复合物的成员。我们报告说,α1-COP功能的丧失通过影响call糖降解酶PdBG2的亚细胞蛋白定位来提高PD的call糖积累。这个过程与ERH1的功能有关,ERH1是一种肌醇磷酰神经酰胺合酶,和葡萄糖神经酰胺合酶通过与α1-COP蛋白的物理相互作用。此外,α1-COP功能的丧失改变了ERH1和GCS蛋白的亚细胞定位,导致GlcCers和GlcHCers分子的减少,它们是脂筏形成的关键鞘脂(SL)物种。我们的研究结果表明,α1-COP蛋白,与SL改性剂一起控制脂筏成分,调节GPI锚定的PDBG2蛋白的亚细胞定位,因此,PD时的call体周转和生物分子的共质运动。我们的发现提供了第一个关键线索,将COPI介导的细胞内运输途径与通过PD的call糖介导的细胞间信号传导途径联系起来。
    Callose, a β-1,3-glucan plant cell wall polymer, regulates symplasmic channel size at plasmodesmata (PD) and plays a crucial role in a variety of plant processes. However, elucidating the molecular mechanism of PD callose homeostasis is limited. We screened and identified an Arabidopsis mutant plant with excessive callose deposition at PD and found that the mutated gene was α1-COP, a member of the coat protein I (COPI) coatomer complex. We report that loss of function of α1-COP elevates the callose accumulation at PD by affecting subcellular protein localization of callose degradation enzyme PdBG2. This process is linked to the functions of ERH1, an inositol phosphoryl ceramide synthase, and glucosylceramide synthase through physical interactions with the α1-COP protein. Additionally, the loss of function of α1-COP alters the subcellular localization of ERH1 and GCS proteins, resulting in a reduction of GlcCers and GlcHCers molecules, which are key sphingolipid (SL) species for lipid raft formation. Our findings suggest that α1-COP protein, together with SL modifiers controlling lipid raft compositions, regulates the subcellular localization of GPI-anchored PDBG2 proteins, and hence the callose turnover at PD and symplasmic movement of biomolecules. Our findings provide the first key clue to link the COPI-mediated intracellular trafficking pathway to the callose-mediated intercellular signaling pathway through PD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小粒谷物的镰刀菌枯萎病病主要是由子囊菌真菌病原体镰刀菌引起的。花穗组织的感染特征是有效的单端孢菌毒素的生物合成和分泌,其中脱氧雪腐镰刀菌烯醇(DON)由于其对谷物质量和消费者安全的负面影响而被广泛报道。TRI5基因编码DON生物合成途径中的必需酶和单基因缺失突变体,广泛报道ΔTri5将疾病进展限制到接种的小穗。在这项研究中,我们提出了新的生物成像证据,揭示了DON促进了细胞壁通过胞浆的穿越,成功定植宿主组织所必需的过程。ΔTri5的化学互补不能恢复宏观或微观表型,表明DON分泌在空间和时间上都受到严格调节。比较的定性和定量形态细胞分析显示,感染对植物细胞壁厚度没有影响。感染过程中在胞浆菌上的call糖的免疫标记表明,当外源施用时,DON可以增加沉积物,但当存在F.graminearum菌丝时,DON会减少。这项研究强调了霉菌毒素生产相互关联的作用的复杂性,细胞壁结构和浆细胞在这种高度专业化的相互作用中。
    Fusarium head blight disease on small-grain cereals is primarily caused by the ascomycete fungal pathogen Fusarium graminearum. Infection of floral spike tissues is characterized by the biosynthesis and secretion of potent trichothecene mycotoxins, of which deoxynivalenol (DON) is widely reported due to its negative impacts on grain quality and consumer safety. The TRI5 gene encodes an essential enzyme in the DON biosynthesis pathway and the single gene deletion mutant, ΔTri5, is widely reported to restrict disease progression to the inoculated spikelet. In this study, we present novel bioimaging evidence revealing that DON facilitates the traversal of the cell wall through plasmodesmata, a process essential for successful colonization of host tissue. Chemical complementation of ΔTri5 did not restore macro- or microscopic phenotypes, indicating that DON secretion is tightly regulated both spatially and temporally. A comparative qualitative and quantitative morphological cellular analysis revealed infections had no impact on plant cell wall thickness. Immunolabelling of callose at plasmodesmata during infection indicates that DON can increase deposits when applied exogenously but is reduced when F. graminearum hyphae are present. This study highlights the complexity of the interconnected roles of mycotoxin production, cell wall architecture and plasmodesmata in this highly specialized interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    浆细胞(PD)是携带多个膜纳米通道的细胞间细胞器,其允许细胞信号分子的运输。PD的信道调节动态地发生并且在各种发育和生理过程中是必需的。众所周知,call是调节PD通透性或共质连通性的关键成分,但是对信号通路及其调节机制的理解是有限的。这里,我们使用反向遗传学方法来研究C型凝集素受体样激酶1(CLRLK1)在PDcallose调节的细胞质连续性方面的作用。这里,我们发现CLRLK1中的功能缺失突变导致过多的PDcallose沉积物和减少的共质连续性,导致加速的重力响应。蛋白质相互作用组研究还发现,CLRLK1在体外和植物中与肌动蛋白解聚因子3(ADF3)相互作用。此外,ADF3中的突变会导致PDcall体沉积物升高和重力反应加快。我们的结果表明,CLRLK1和ADF3负调节PDcall的积累,有助于微调对称开口孔径。总的来说,我们的研究确定了与PDcall的沉积物有关的两个关键成分,并提供了新的见解,以了解如何通过控制PDcall的同质性来维持symasal连通性。
    Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病毒采用一系列不同的翻译策略来扩展其编码能力,产生具有共同结构域的病毒蛋白,并纠缠病毒与宿主的相互作用。P3N-PIPO,这是P3顺反子的转录滑移产物,是一种专门用于细胞间运动的potyvirus蛋白。这里,我们表明,西瓜花叶病毒(WMV)的P3N-PIPO在带有Wmr抗性基因的黄瓜甜瓜登录名PI414723中瞬时表达时,会触发细胞死亡。令人惊讶的是,P3N结构域的表达,P3N-PIPO和P3共享,可以单独诱导细胞死亡,而P3的表达未能激活PI414723中的细胞死亡。共聚焦显微镜分析显示,P3N-PIPO靶向胞浆(PD)和P3N与PD相关,而P3定位于甜瓜细胞的内质网。我们还发现,P3N结构域的残基L35、L38、P41和I43的突变分别破坏了P3N-PIPO诱导的细胞死亡,但不影响P3N-PIPO的PD定位。此外,具有L35A或I43A的WMV突变体可以系统地感染PI414723植物。这些关键残基指导我们发现一些可能破坏Wmr抗性的WMV分离株。通过搜索NCBI数据库,我们发现了一些WMV分离株在这些关键位点有变异,和一个天然存在的I43V变异使WMV能够系统地感染PI414723植物。一起来看,这些结果表明,P3N-PIPO,但不是P3,是Wmr认可的无毒力决定因素,尽管共享的N末端P3N域可以单独触发细胞死亡。重要性这项工作揭示了一种由抗性(R)基因识别的新型病毒无毒力(Avr)基因。这种新型病毒Avr基因是特殊的,因为它是另一种病毒基因的转录滑移产物,这意味着它们的编码蛋白质共享共同的N末端结构域,但具有不同的C末端结构域。令人惊讶的是,我们发现确定Avr-R识别的是常见的N端域,但是只有一种病毒蛋白可以被R蛋白识别以诱导细胞死亡。接下来,我们发现这两种病毒蛋白靶向不同的亚细胞区室。此外,我们发现了一些病毒分离株,其常见的N端结构域存在变异,并且有一个天然存在的变异使病毒能够克服耐药性。这些结果显示了具有共同结构域的病毒蛋白如何与宿主抗性蛋白相互作用,并为植物和病毒之间的军备竞赛提供了新的证据。
    Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号