pioneer neurons

  • 文章类型: Journal Article
    在胚胎发育过程中,嗅觉电位(OP)产生迁移神经元,包括嗅觉先驱神经元,末梢神经细胞(TN),促性腺激素释放激素-1(GnRH-1)神经元,和其他未表征的神经元。来自OP的先锋神经元诱导嗅球(OB)形态发生。在老鼠身上,GnRH-1神经元出现在妊娠中期的嗅觉系统中,并通过TN轴突迁移到不同的大脑区域。GnRH-1神经元对控制下丘脑-垂体-性腺轴至关重要。Kallmann综合征的特征是嗅觉系统发育受损,有缺陷的OOB,分泌GnRH-1和不孕症。嗅觉系统与GnRH-1发育之间的精确机制联系尚不清楚。在人类和小鼠中的研究强调了前动力蛋白2/前动力蛋白受体2(Prokr2)信号通路在OB形态发生和GnRH-1神经元迁移中的重要性。Prokr2功能丧失突变可导致Kallmann综合征(KS),因此,Prokr2信号通路代表了破译嗅觉/GnRH-1连接的独特模型。我们发现Prokr2在GnRH-1神经元形成的关键时期在TN神经元中表达,迁移,和OB形态发生的诱导。单细胞RNA测序鉴定TN由不同于嗅觉神经元的神经元形成。TN神经元表达多个与KS相关的基因。我们的研究表明,先锋/TN神经元的异常发育可能导致KS谱。
    During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Despite the increasing data concerning the structure of the adult nervous system in various Lophotrochozoa groups, the early events during the neurogenesis of rare and unique groups need clarification. Annelida are a diverse clade of Lophotrochozoa, and their representatives demonstrate a variety of body plans, lifestyles, and life cycles. Comparative data about the early development are available for Errantia, Sedentaria, Sipuncula, and Palaeoannelida; however, our knowledge of Dinophiliformia is currently scarce. Representatives of Dinophiliformia are small interstitial worms combining unique morphological features of different Lophotrochozoan taxa and expressing paedomorphic traits. We describe in detail the early neurogenesis of two related species: Dimorphilus gyrociliatus and Dinophilus vorticoides, from the appearance of first nerve cells until the formation of an adult body plan. In both species, the first cells were detected at the anterior and posterior regions at the early trochophore stage and demonstrated positive reactions with pan-neuronal marker anti-acetylated tubulin only. Long fibers of early cells grow towards each other and form longitudinal bundles along which differentiating neurons later appear and send their processes. We propose that these early cells serve as pioneer neurons, forming a layout of the adult nervous system. The early anterior cell of D. vorticoides is transient and present during the short embryonic period, while early anterior and posterior cells in D. gyrociliatus are maintained throughout the whole lifespan of the species. During development, the growing processes of early cells form compact brain neuropile, paired ventral and lateral longitudinal bundles; unpaired medial longitudinal bundle; and commissures in the ventral hyposphere. Specific 5-HT- and FMRFa-immunopositive neurons differentiate adjacent to the ventral bundles and brain neuropile in the middle trochophore and late trochophore stages, i.e. after the main structures of the nervous system have already been established. Processes of 5-HT- and FMRFa-positive cells constitute a small proportion of the tubulin-immunopositive brain neuropile, ventral cords, and commissures in all developmental stages. No 5-HT- and FMRFa-positive cells similar to apical sensory cells of other Lophotrochozoa were detected. We conclude that: (i) like in Errantia and Sedentaria, Dinophiliformia neurogenesis starts from the peripheral cells, whose processes prefigure the forming adult nervous system, (ii) Dinophiliformia early cells are negative to 5-HT and FMRFa antibodies like Sedentaria pioneer cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nervous system development is an interplay of many processes: the formation of individual neurons, which depends on whole-body and local patterning processes, and the coordinated growth of neurites and synapse formation. While knowledge of neural patterning in several animal groups is increasing, data on pioneer neurons that create the early axonal scaffold are scarce. Here we studied the first steps of nervous system development in the annelid Malacoceros fuliginosus.
    We performed a dense expression profiling of a broad set of neural genes. We found that SoxB expression begins at 4 h postfertilization, and shortly later, the neuronal progenitors can be identified at the anterior and the posterior pole by the transient and dynamic expression of proneural genes. At 9 hpf, the first neuronal cells start differentiating, and we provide a detailed description of axonal outgrowth of the pioneer neurons that create the primary neuronal scaffold. Tracing back the clonal origin of the ventral nerve cord pioneer neuron revealed that it is a descendant of the blastomere 2d (2d221), which after 7 cleavages starts expressing Neurogenin, Acheate-Scute and NeuroD.
    We propose that an anterior and posterior origin of the nervous system is ancestral in annelids. We suggest that closer examination of the first pioneer neurons will be valuable in better understanding of nervous system development in spirally cleaving animals, to determine the potential role of cell-intrinsic properties in neuronal specification and to resolve the evolution of nervous systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    尖峰活动如何通过神经元网络回荡,诱发和自发活动如何相互作用和融合,以及组合活动如何代表外部刺激是神经科学中的关键问题。我们在计算机模拟中模拟了非结构化尖峰网络的最小模型,询问随后温和的外部刺激是否以及如何反映在自发活动波动中。与早期的计算机和体外研究结果一致,我们观察到“先驱神经元”的特权亚群,根据他们的射击顺序,可靠地编码先前的外部刺激。我们还确认先锋神经元是“敏感的”,因为它们是由人口活动的小波动招募的。我们表明,基于顺序的表示依赖于具有不同敏感度的先驱神经元的“链”,因此构成了集体动力学的新兴属性。广泛异构的连接拓扑极大地促进了这种表示的形成,即连接程度广泛的“中产阶级”。总之,我们为先锋神经元的代表性作用提供了一个最小的模型,如在体外实验观察到的。此外,我们表明,广泛的异构连接增强了非结构化网络的表示能力。
    How spiking activity reverberates through neuronal networks, how evoked and spontaneous activity interacts and blends, and how the combined activities represent external stimulation are pivotal questions in neuroscience. We simulated minimal models of unstructured spiking networks in silico, asking whether and how gentle external stimulation might be subsequently reflected in spontaneous activity fluctuations. Consistent with earlier findings in silico and in vitro, we observe a privileged subpopulation of \'pioneer neurons\' that, by their firing order, reliably encode previous external stimulation. We also confirm that pioneer neurons are \'sensitive\' in that they are recruited by small fluctuations of population activity. We show that order-based representations rely on a \'chain\' of pioneer neurons with different degrees of sensitivity and thus constitute an emergent property of collective dynamics. The forming of such representations is greatly favoured by a broadly heterogeneous connection topology-a broad \'middle class\' in degree of connectedness. In conclusion, we offer a minimal model for the representational role of pioneer neurons, as observed experimentally in vitro. In addition, we show that broadly heterogeneous connectivity enhances the representational capacity of unstructured networks.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The antennal nervous system of the grasshopper Schistocerca gregaria features two parallel axon tracts each established early in embryogenesis by discrete pairs of pioneer neurons located at the antennal tip and whose growth cones contact so-called base pioneers en route to the brain. Here we present two antennal phenotypes in which a stereotypic dysregulation of axogenesis in a given tract is observed when only the base pioneer associated with that pathway is missing, consistent with a role for this cell type in guided axogenesis. Dysregulation involves defasciculation and aberrant navigation by pioneer axons resulting in a missing or depleted primordial antennal nerve to the brain. The dysregulated phenotypes reveal that axogenesis in each pathway is regulated independently. Previously unseen discrepancies in the navigational decisions made by pioneer neurons which derive sequentially from the same mother cell demonstrate that these progeny have separate identities. Possible mechanisms for the dysregulated phenotypes are considered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    In this work, the use of scaffolds is reported, templated from live neurons as an advanced culture platform for primary neurons. Hippocampal neurons cultured on neurotemplated scaffolds exhibit an affinity for templated somas, revealing a preference for micrometric structures amidst nanotopographical features. It is also reported, for the first time, that neurite complexity can be topographically controlled by increasing the density of nanometric features on neurotemplated scaffolds. Neurotemplated scaffolds are versatile, hierarchical topographies that feature biologically relevant structures, in both form and scale, and capture the true complexity of an in vivo environment. The introduction and implementation of neurotemplated scaffolds is sure to advance research in the fields of neurodevelopment, network development, and neuroregeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The nervous system of the antenna of the grasshopper Schistocerca gregaria consists of two nerve tracts in which sensory cells project their axons to the brain. Each tract is pioneered early in embryogenesis by a pair of identified cells located apically in the antennal lumen. The pioneers are thought to originate in the epithelium of the antenna and then delaminate into the lumen where they commence axogenesis. However, unambiguous molecular identification of these cells in the epithelium, of an identifiable precursor, and of their mode of generation has been lacking. In this study, we have used immunolabeling against neuron-specific horseradish peroxidase and against Lachesin, a marker for differentiating epithelial cells, in combination with the nuclear stain DAPI, to identify the pioneers within the epithelium of the early embryonic antenna. We then track their delamination into the lumen as differentiated neurons. The pioneers are not labeled by the mesodermal/mesectodermal marker Mes3, consistent with an epithelial (ectodermal) origin. Intracellular dye injection, as well as labeling against the mitosis marker phospho-histone 3, identifies precursor cells in the epithelium, each associated with a column of cells. Culturing with the S-phase label 5-ethynyl-2\'-deoxyuridine (EdU) shows that both a precursor and its column have incorporated the label, confirming a lineage relationship. Each set of pioneers can be shown to belong to a separate lineage of such epithelial cells, and the precursors remain and are proliferative after generating the pioneers. Analyses of mitotic spindle orientation then enable us to propose a model in which a precursor generates its pioneers asymmetrically via self-renewal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Using immunohistochemical labeling against acetylated a-tubulin and serotonin in combination with confocal laser scanning microscopy and 3D-reconstruction, we investigated the temporary freshwater pond inhabitant Branchinella sp. (Crustacea: Branchiopoda: Anostraca) for the first time to provide detailed data on the development of the anostracan nervous system. Protocerebral sense organs such as the nauplius eye and frontal filament organs are present as early as the hatching stage L0. In the postnaupliar region, two terminal pioneer neurons grow from posterior to anterior to connect the mandibular neuromeres. The first protocerebral neuropil to emerge is not part of the central complex but represents the median neuropil, and begins to develop from L0+ onwards. In stage L3, the first evidence of developing compound eyes is visible. This is followed by the formation of the visual neuropils and the neuropils of the central complex in the protocerebrum. From the deutocerebral lobes, the projecting neuron tract proceeds to both sides of the lateral protocerebrum, forming a chiasma just behind the central body. In the postnaupliar region, the peripheral nervous system, commissures and connectives develop along an anterior-posterior gradient after the fasciculation of the terminal pioneer neurons with the mandibular neuromere. The peripheral nervous system in the thoracic segments consists of two longitudinal neurite bundles on each side which connect the intersegmental nerves, together with the ventral nervous system forming an orthogon-like network. Here, we discuss, among other things, the evidence of a fourth nauplius eye nerve and decussating projecting neuron tract found in Branchinella sp., and provide arguments to support our view that the crustacean frontal filament (organ) and onychophoran primary antenna are homologous. J. Morphol. 277:1423-1446, 2016. © 2016 Wiley Periodicals, Inc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在早期胚胎蝗虫中,触角顶端附近的两对兄弟姐妹细胞将其背侧和腹侧神经束开辟到大脑。在途中,这些先驱者的生长锥接触与每个管道相关的所谓的基地先驱者,并充当路标单元。顶端和基础先驱都表达定型分子标记,从而可以对其进行唯一鉴定。虽然它们的发育起源在很大程度上被理解,各自先驱者的命运仍不清楚。因此,我们使用已建立的细胞死亡标记吖啶橙和TUNEL来确定顶端和基础先驱是否在胚胎发生过程中发生凋亡。我们的数据显示,根尖先驱从他们的出生到胚胎中期都保持着一致的分子谱,此时,已经建立了通往大脑的初始触角神经束。此后不久,根尖先驱者经历了凋亡。死亡发生在类似于其他地方报道的腿部先驱的发育阶段-同源附属物。基地先驱,相比之下,逐渐改变其分子谱,并且在胚胎中期发生后不再明确识别。到那时为止,他们没有表现出死亡标签。如果他们坚持,必须假定基础先驱在发育中的触角神经系统中扮演新角色。
    In the early embryonic grasshopper, two pairs of sibling cells near the apex of the antenna pioneer its dorsal and ventral nerve tracts to the brain. En route, the growth cones of these pioneers contact a so-called base pioneer associated with each tract and which acts as a guidepost cell. Both apical and basal pioneers express stereotypic molecular labels allowing them to be uniquely identified. Although their developmental origins are largely understood, the fates of the respective pioneers remain unclear. We therefore employed the established cell death markers acridine orange and TUNEL to determine whether the apical and basal pioneers undergo apoptosis during embryogenesis. Our data reveal that the apical pioneers maintain a consistent molecular profile from their birth up to mid-embryogenesis, at which point the initial antennal nerve tracts to the brain have been established. Shortly after this the apical pioneers undergo apoptosis. Death occurs at a developmental stage similar to that reported elsewhere for pioneers in a leg - an homologous appendage. Base pioneers, by contrast, progressively change their molecular profile and can no longer be unequivocally identified after mid-embryogenesis. At no stage up to then do they exhibit death labels. If they persist, the base pioneers must be assumed to adopt a new role in the developing antennal nervous system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The twin nerve tracts of the antenna of the grasshopper Schistocerca gregaria are established early in embryogenesis by sibling pairs of pioneers which delaminate from the epithelium into the lumen at the antennal tip. These cells can be uniquely identified via their co-expression of the neuronal labels horseradish peroxidase and the lipocalin Lazarillo. The apical pioneers direct axons toward the antennal base where they encounter guidepost-like cells called base pioneers which transiently express the same molecular labels as the apical pioneers. To what extent the pioneer growth cones then progress into the brain neuropil proper, and what their targets there might be, has remained unclear. In this study, we show that the apical antennal pioneers project centrally beyond the antennal base first into the deutocerebral, and then into the protocerebral brain neuropils. In the protocerebrum, we identify their target circuitry as being identified Lazarillo-positive cells which themselves pioneer the primary axon scaffold of the brain. The apical and base antennal pioneers therefore form part of a molecularly contiguous pathway from the periphery to an identified central circuit of the embryonic grasshopper brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号