nucleotide triphosphate

  • 文章类型: Journal Article
    Strong infectivity enables coronavirus disease 2019 (COVID-19) to rage throughout the world. Moreover, the lack of drugs with definite therapeutic effects further aggravates the spread of the pandemic. Remdesivir is one of the most promising anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. However, the limited clinical effects make its therapeutic effect controversial, which may result from the poor accumulation and activation of remdesivir in the lung. Therefore, we developed lyophilized remdesivir liposomes (Rdv-lips) which can be reconstituted as liposomal aerosol for pulmonary delivery to improve the in vivo behavior of existing remdesivir cyclodextrin conclusion compound (Rdv-cyc) injections. Liposome encapsulation endowed remdesivir with much higher solubility and better biocompatibility. The in vitro liposomal aerosol characterization demonstrated that Rdv-lips possessed a mass median aerodynamic diameter of 4.118 μm and fine particle fraction (<5 μm) higher than 50%, indicating good pulmonary delivery properties. Compared to the Rdv-cyc intravenous injection group, the Rdv-lips inhalation group displayed a nearly 100-fold increase in the remdesivir-active metabolite nucleotide triphosphate (NTP) concentration and better NTP accumulation in the lung than the Rdv-cyc inhalation group. A faster transition from remdesivir to NTP of Rdv-lips (inhalation) could also be observed due to better cell uptake. Compared to other preparations, the superiority of Rdv-lips was further evidenced by the results of an in vivo safety study, with little possibility of inducing inflammation. In conclusion, Rdv-lips for pulmonary delivery will be a potent formulation to improve the in vivo behavior of remdesivir and exert better therapeutic effects in COVID-19 treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新制备的荧光羧酰胺基喹啉(1-3)及其Zn(II)配合物(Zn@1-Zn@3)用于结合和传感各种磷酸根阴离子利用中继机制,其中Zn(II)离子从Zn@1-Zn@3络合物迁移到磷酸盐中,即腺苷5'-三磷酸(ATP)和焦磷酸(PPi),伴随着荧光急剧变化的过程。Zn@1-Zn@3组装体与腺嘌呤核苷酸磷酸相互作用,同时显示分析物特异性响应。使用UV-vis研究了这个过程,荧光,和NMR光谱。结果表明,不同的结合选择性和相应的荧光响应能够区分5'-三磷酸腺苷(ATP),5'-二磷酸腺苷(ADP),焦磷酸盐(PPi),和磷酸盐(Pi)。羧基氨基喹啉-Zn(II)传感器的交叉反应性质与线性判别分析(LDA)结合用于简单的荧光化学传感器阵列中,该阵列可用于鉴定ATP。ADP,PPi,和Pi来自8个其他阴离子,包括腺苷5'-单磷酸(AMP),具有100%正确的分类。此外,支持向量机算法,一种机器学习方法,允许在未知样品中5-100μM浓度范围内对ATP进行高度准确的定量,误差<2.5%。
    The newly prepared fluorescent carboxyamidoquinolines (1-3) and their Zn(II) complexes (Zn@1-Zn@3) were used to bind and sense various phosphate anions utilizing a relay mechanism, in which the Zn(II) ion migrates from the Zn@1-Zn@3 complexes to the phosphate, namely adenosine 5\'-triphosphate (ATP) and pyrophosphate (PPi), a process accompanied by a dramatic change in fluorescence. Zn@1-Zn@3 assemblies interact with adenine nucleotide phosphates while displaying an analyte-specific response. This process was investigated using UV-vis, fluorescence, and NMR spectroscopy. It is shown that the different binding selectivity and the corresponding fluorescence response enable differentiation of adenosine 5\'-triphosphate (ATP), adenosine 5\'-diphosphate (ADP), pyrophosphate (PPi), and phosphate (Pi). The cross-reactive nature of the carboxyamidoquinolines-Zn(II) sensors in conjunction with linear discriminant analysis (LDA) was utilized in a simple fluorescence chemosensor array that allows for the identification of ATP, ADP, PPi, and Pi from 8 other anions including adenosine 5\'-monophosphate (AMP) with 100 % correct classification. Furthermore, the support vector machine algorithm, a machine learning method, allowed for highly accurate quantitation of ATP in the range of 5-100 μM concentration in unknown samples with error <2.5 %.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Remdesivir is a prodrug of the nucleotide analogue and used for COVID-19 treatment. However, the bioanalysis of the active metabolites remdesivir nucleotide triphosphate (RTP) and its precursor remdesivir nucleotide monophosphate (RMP) is very challenging. Herein, we established a novel method to separate RTP and RMP on a BioBasic AX column and quantified them by high-performance liquid chromatography-tandem mass spectrometry in positive electrospray ionization mode. Stepwise, we optimized chromatographic retention on an anion exchange column, improved stability in matrix through the addition of 5,5\'-dithiobis-(2nitrobenzoic acid) and PhosSTOP EASYpack, and increased recovery by dissociation of tight protein binding with 2 % formic acid aqueous solution. The method allowed lower limit of quantification of 20 nM for RMP and 10 nM for RTP. Method validation demonstrated acceptable accuracy (93.6%-103% for RMP, 94.5%-107% for RTP) and precision (RSD < 11.9 % for RMP, RSD < 11.4 % for RTP), suggesting that it was sensitive and robust for simultaneous quantification of RMP and RTP. The method was successfully applied to analyze RMP and RTP in mouse tissues. In general, the developed method is suitable to monitor RMP and RTP, and provides a useful approach for exploring more detailed effects of remdesivir in treating diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Remdesivir (RDV) exerts anti-severe acute respiratory coronavirus 2 activity following metabolic activation in the target tissues. However, the pharmacokinetics and tissue distributions of the parent drug and its active metabolites have been poorly characterized to date. Blood and tissue levels were evaluated in the current study. After intravenous administration of 20 mg/kg RDV in mice, the concentrations of the parent drug, nucleotide monophosphate (RMP) and triphosphate (RTP), as well as nucleoside (RN), in the blood, heart, liver, lung, kidney, testis, and small intestine were quantified. In blood, RDV was rapidly and completely metabolized and was barely detected at 0.5 h, similar to RTP, while its metabolites RMP and RN exhibited higher blood levels with increased residence times. The area under the concentration versus time curve up to the last measured point in time (AUC0-t) values of RMP and RN were 4558 and 136,572 h∙nM, respectively. The maximum plasma concentration (Cmax) values of RMP and RN were 2896 nM and 35,819 nM, respectively. Moreover, RDV presented an extensive distribution, and the lung, liver and kidney showed high levels of the parent drug and metabolites. The metabolic stabilities of RDV and RMP were also evaluated using lung, liver, and kidney microsomes. RDV showed higher clearances in the liver and kidney than in the lung, with intrinsic clearance (CLint) values of 1740, 1253, and 127 mL/(min∙g microsomal protein), respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    A new label-free molecular probe for luminescent nucleotide detection in neutral aqueous solution is presented. Phosphate-containing molecules, such as nucleotides possess vital role in cell metabolism, energy economy, and various signaling processes. Thus, the monitoring of nucleotide concentration and nucleotide related enzymatic reactions is of high importance. Two component lanthanide complex formed from Tb(III) ion carrier and light harvesting antenna, readily distinguishes nucleotides containing different number of phosphates and enable direct detection of enzymatic reactions converting nucleotide triphosphate (NTP) to nucleotide di/monophosphate or the opposite. Developed sensor enables the detection of enzymatic activity with a low nanomolar sensitivity, as highlighted with K-Ras and apyrase enzymes in their hydrolysis assays performed in a high throughput screening compatible 384-well plate format.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dethiobiotin synthetase (DTBS) plays a crucial role in biotin biosynthesis in microorganisms, fungi, and plants. Due to its importance in bacterial pathogenesis, and the absence of a human homologue, DTBS is a promising target for the development of new antibacterials desperately needed to combat antibiotic resistance. Here we report the first X-ray structure of DTBS from Mycobacterium tuberculosis (MtDTBS) bound to a nucleotide triphosphate (CTP). The nucleoside base is stabilized in its pocket through hydrogen-bonding interactions with the protein backbone, rather than amino acid side chains. This resulted in the unexpected finding that MtDTBS could utilise ATP, CTP, GTP, ITP, TTP, or UTP with similar Km and kcat values, although the enzyme had the highest affinity for CTP in competitive binding and surface plasmon resonance assays. This is in contrast to other DTBS homologues that preferentially bind ATP primarily through hydrogen-bonds between the purine base and the carboxamide side chain of a key asparagine. Mutational analysis performed alongside in silico experiments revealed a gate-keeper role for Asn175 in Escherichia coli DTBS that excludes binding of other nucleotide triphosphates. Here we provide evidence to show that MtDTBS has a broad nucleotide specificity due to the absence of the gate-keeper residue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    延伸速度是RNA聚合酶II(RNApolII)活性的关键参数。它会影响转录速率,虽然它受物理化学环境的制约,但它同时在其中工作。例如,众所周知,温度影响生化反应速率。因此,在能够在各种环境温度下生长的自由生物中,比如酿酒酵母,进化不仅应该塑造这种关键酶的结构和功能特性,但也应该提供机制和途径,使其活动适应所需的最佳性能。我们研究了酵母生长温度变化引起的RNApolII延伸速度的变化,发现它们严格遵循Arrhenius方程,并且它们还在最佳生长温度范围(26-37°C)内引起RNApolII密度几乎成反比的变化。此外,我们发现酵母细胞通过改变可用RNApolII的总量来控制转录起始速率。
    Elongation speed is a key parameter in RNA polymerase II (RNA pol II) activity. It affects the transcription rate, while it is conditioned by the physicochemical environment it works in at the same time. For instance, it is well-known that temperature affects the biochemical reactions rates. Therefore in free-living organisms that are able to grow at various environmental temperatures, such as the yeast Saccharomyces cerevisiae, evolution should have not only shaped the structural and functional properties of this key enzyme, but should have also provided mechanisms and pathways to adapt its activity to the optimal performance required. We studied the changes in RNA pol II elongation speed caused by alternations in growth temperature in yeast to find that they strictly follow the Arrhenius equation, and that they also provoke an almost inverse proportional change in RNA pol II density within the optimal growth temperature range (26-37 °C). Moreover, we discovered that yeast cells control the transcription initiation rate by changing the total amount of available RNA pol II.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Kinesin motor proteins comprise an ATPase superfamily that works hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on multi-faceted analyses of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号