nonribosomal peptide synthetase

非核糖体肽合成酶
  • 文章类型: Journal Article
    非核糖体肽合成酶(NRPS)负责生产重要的生物活性肽。大,多结构域NRPS通过组装线策略操作,其中生长的肽被束缚到载体结构域,所述载体结构域将中间体递送到邻近的催化结构域。虽然大多数NRPS结构域催化氨基酸活化的标准化学,肽键形成和产物释放,一些典型的NRPS催化结构域促进了意想不到的化学反应。范例单巴坦抗生素磺胺草碱是通过SulM的末端硫酯酶结构域的活性产生的,催化不寻常的β-内酰胺形成反应,其中C末端N-磺基-2,3-二氨基丙酸酯残基的氮攻击其硫酯系链以释放单内酰胺产物。我们已经将硫酯酶结构域的结构确定为独立结构域和与上游全肽基载体结构域的二结构域复合物。变异盖螺旋的位置导致一个非常受限的活性位点口袋,这可能是使底物正确取向以形成β-内酰胺所必需的特征。将磺胺草三肽建模到活性位点中鉴定了似乎合理的结合模式,分别鉴定了氨基磺酸酯和肽主链与Arg2849和Asn2819的潜在相互作用。总体结构类似于形成β-内酯的硫酯酶结构域,其在生产obaffluin中负责类似的环闭合。我们进一步利用这些见解,使生物信息学分析能够识别额外的,通过基因组挖掘未表征的β-内酰胺形成生物合成基因簇。
    Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation, and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual β-lactam-forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for β-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the β-lactone-forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized β-lactam-forming biosynthetic gene clusters by genome mining.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非天然产物(uNP)非核糖体肽有望成为药物发现的有价值的药效来源。然而,非核糖体肽合成酶(NRPS)酶的极大尺寸和复杂性对通过组合生物合成和合成生物学生产此类uNP提出了严峻挑战。在这里,我们报告了一种新的NRPS解剖策略,该策略可促进这些NRPS的工程化和异源生产。该策略将NRPS分为“拆分单位”,每个形成包含催化独立模块的酶亚基。然后通过人为复制来促进子单元之间的功能协作,在下游亚基的N端,驻留在上游亚基C末端的接头-巯基化结构域-接头片段。使用建议的分裂位点,该位点遵循连接腺苷酸化和巯基化结构域的接头中的保守基序,允许同源或嵌合分裂单元对实现匹配的生产率,在许多情况下超过了杂合嵌合酶,甚至那些完整的NRPS,在异源底盘中生产。我们的策略为真菌NRPS的合理工程和非核糖体肽生产的组合重编程提供了简便的选择。
    Unnatural product (uNP) nonribosomal peptides promise to be a valuable source of pharmacophores for drug discovery. However, the extremely large size and complexity of the nonribosomal peptide synthetase (NRPS) enzymes pose formidable challenges to the production of such uNPs by combinatorial biosynthesis and synthetic biology. Here we report a new NRPS dissection strategy that facilitates the engineering and heterologous production of these NRPSs. This strategy divides NRPSs into \"splitting units\", each forming an enzyme subunit that contains catalytically independent modules. Functional collaboration between the subunits is then facilitated by artificially duplicating, at the N-terminus of the downstream subunit, the linker - thiolation domain - linker fragment that is resident at the C-terminus of the upstream subunit. Using the suggested split site that follows a conserved motif in the linker connecting the adenylation and the thiolation domains allows cognate or chimeric splitting unit pairs to achieve productivities that match, and in many cases surpass those of hybrid chimeric enzymes, and even those of intact NRPSs, upon production in a heterologous chassis. Our strategy provides facile options for the rational engineering of fungal NRPSs and for the combinatorial reprogramming of nonribosomal peptide production.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    下一代测序改变了大量基因组信息的获取,包括在宏基因组数据库中快速鉴定靶基因序列。然而,优势种有时会阻碍稀有细菌的检测。因此,本研究开发了一种高度敏感的扩增技术,可以选择性扩增含有目标基因的细菌基因组。滚环扩增(RCA)方法可以使用特异性单引物从单个基因座开始扩增以扩增特异性全基因组。使用荧光假单胞菌ATCC17400(靶向非核糖体肽合成酶[NRPS])和大肠杆菌(非靶标)制备混合细胞悬液,为NRPS设计的特异性引物用于RCA反应。所得的RCA产物(RCP)仅扩增假单胞菌基因组。使用RCP作为模板从甚至五个细胞中成功扩增NRPS,表明单引物RCA技术可以使用基因特异性引物特异性富集靶基因组。最终,这种特定的基因组RCA技术被应用于从海绵相关细菌中提取的宏基因组,和NRPS序列从未知的海绵相关细菌中成功获得。因此,这种方法可以有效地获取未知细菌中NRPS的物种特异性序列,包括有活力但不可培养的细菌。
    Next-generation sequencing has transformed the acquisition of vast amounts of genomic information, including the rapid identification of target gene sequences in metagenomic databases. However, dominant species can sometimes hinder the detection of rare bacterial species. Therefore, a highly sensitive amplification technique that can selectively amplify bacterial genomes containing target genes of interest was developed in this study. The rolling circle amplification (RCA) method can initiate amplification from a single locus using a specific single primer to amplify a specific whole genome. A mixed cell suspension was prepared using Pseudomonas fluorescens ATCC17400 (targeting nonribosomal peptide synthetase [NRPS]) and Escherichia coli (non-target), and a specific primer designed for the NRPS was used for the RCA reaction. The resulting RCA product (RCP) amplified only the Pseudomonas genome. The NRPS was successfully amplified using RCP as a template from even five cells, indicating that the single-priming RCA technique can specifically enrich the target genome using gene-specific primers. Ultimately, this specific genome RCA technique was applied to metagenomes extracted from sponge-associated bacteria, and NRPS sequences were successfully obtained from an unknown sponge-associated bacterium. Therefore, this method could be effective for accessing species-specific sequences of NRPS in unknown bacteria, including viable but non-culturable bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从放线菌中发现的异腈脂肽由于其令人着迷的生物合成途径以及与包括结核分枝杆菌在内的许多人类病原体的毒力的相关性而引起了广泛关注。具体来说,属于非血红素铁(II)和α-酮戊二酸依赖性双加氧酶的新型异腈形成酶的鉴定引起了几个研究小组的兴趣,以研究其催化机理。在这里,我们总结了链霉菌和分枝杆菌生物合成异腈脂肽的最新研究。本文综述了该途径中涉及的核心酶和定制酶以及异腈代谢酶的最新研究。
    Isonitrile lipopeptides discovered from Actinobacteria have attracted wide attention due to their fascinating biosynthetic pathways and relevance to the virulence of many human pathogens including Mycobacterium tuberculosis. Specifically, the identification of the new class of isonitrile-forming enzymes that belong to non-heme iron (II) and α-ketoglutarate dependent dioxygenases has intrigued several research groups to investigate their catalytic mechanism. Here we summarize the recent studies on the biosynthesis of isonitrile lipopeptides from Streptomyces and Mycobacterium. The latest research on the core and tailoring enzymes involved in the pathway as well as the isonitrile metabolic enzymes are discussed in this review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Diels-Alder(DA)反应,特别是指周环反应中的[4+2]环加成反应,是通过电子环过渡态在单个步骤中形成两个碳-碳共价键的过程。在微生物产生的次级代谢产物中,许多化合物是通过DA反应生物合成的,其中大部分是酶。我们的研究小组发现了一种名为Diels-Alderase(DAase)的酶,该酶可催化丝状真菌中的DA反应,我们一直在研究其催化机理。这篇综述描述了已报道的微生物DAase酶,特别关注那些参与构建萘烷环的人。
    The Diels-Alder (DA) reaction, specifically referring to the [4 + 2] cycloaddition reaction in pericyclic reactions, is a process that forms two carbon-carbon covalent bonds in a single step via an electron ring transition state. Among the secondary metabolites produced by microorganisms, numerous compounds are biosynthesized through DA reactions, most of which are enzymatic. Our research group has discovered an enzyme named Diels-Alderase (DAase) that catalyzes the DA reaction in filamentous fungi, and we have been investigating its catalytic mechanism. This review describes the reported microbial DAase enzymes, with a particular focus on those involved in the construction of the decalin ring.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    非核糖体肽合成酶(NRPS)负责生产重要的生物活性肽。大,多结构域NRPS通过组装线策略操作,其中生长的肽被束缚到载体结构域,所述载体结构域将中间体递送到邻近的催化结构域。虽然大多数NRPS结构域催化氨基酸活化的标准化学,肽键形成和产物释放,一些典型的NRPS催化结构域促进了意想不到的化学反应。典型的单bactam抗生素磺胺草碱是通过末端硫酯酶结构域的活性产生的,该结构域催化不寻常的β-内酰胺形成反应,其中C末端N-磺基-2,3-二氨基丙酸酯残基的氮攻击其硫酯系链以释放β-内酰胺产物。我们已经将硫酯酶结构域的结构确定为独立结构域和与上游全肽基载体结构域的二结构域复合物。该结构说明了约束的活性位点,该位点使底物正确定向以形成β-内酰胺。在这方面,该结构类似于负责生产obaffluin的β-内酯形成硫酯酶结构域。对结构的分析确定了负责这种四元环闭合的特征,并使生物信息学分析能够识别额外的,通过基因组挖掘未表征的β-内酰胺形成生物合成基因簇。
    Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain that catalyzes an unusual β-lactam forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the β-lactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The structure illustrates a constrained active site that orients the substrate properly for β-lactam formation. In this regard, the structure is similar to the β-lactone forming thioesterase domain responsible for the production of obafluorin. Analysis of the structure identifies features that are responsible for this four-membered ring closure and enable bioinformatic analysis to identify additional, uncharacterized β-lactam-forming biosynthetic gene clusters by genome mining.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:天然四胺是具有表现出宽范围生物活性的四胺酸(吡咯烷-2,4-二酮)部分的杂化聚酮化合物家族。微生物中四聚体的生物合成通常由杂合聚酮合成酶(PKS)和非核糖体肽合成酶(NRPS)机制指导,通过在细菌中募集反式或顺式作用的硫酯酶样Dieckmann环化酶来形成四酰胺酸环。有一组具有独特骨架的3-(2H-吡喃-2-亚基)吡咯烷-2,4-二酮的四胺酸盐,它们的生物合成逻辑还有待研究。
    结果:这里,四甲酸型化合物溴碘酮(BPD)及其新类似物,具有3-(2H-吡喃-2-亚基)吡咯烷-2,4-二酮的罕见骨架,从海绵共生细菌链霉菌LHW50302中发现。基因缺失和突变互补表明BPDs的产生与PKS-NRPS生物合成基因簇(BGC)相关,其中通过定点突变鉴定了Dieckmann环化酶基因bpdE。根据生物信息学分析,BPDs的四酰胺酸部分应该在由两个离散蛋白组成的非典型NRPS模块上形成,包括BpdC的C(缩合)-A(腺苷酸化)-T(巯基化)结构域和BpdD的A-T结构域。进一步的定点诱变分析证实了BpdC中A域的自然沉默和两个T域的功能必要性,因此,这表明在两个NRPS亚基的T结构域之间应该发生异常的氨基酰基替硫作用。此外,LuxR型调节基因的表征导致BPDs产量增加了7到8倍。该研究提出了具有3-(2H-吡喃-2-亚基)吡咯烷-2,4-二酮骨架的天然分子的第一个生物合成案例。使用BpdD作为探针的基因组挖掘揭示了单独的NRPS亚基之间的氨基酰基转硫醇化应该发生在自然界中的特定NRPS群体中。
    BACKGROUND: Natural tetramates are a family of hybrid polyketides bearing tetramic acid (pyrrolidine-2,4-dione) moiety exhibiting a broad range of bioactivities. Biosynthesis of tetramates in microorganisms is normally directed by hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries, which form the tetramic acid ring by recruiting trans- or cis-acting thioesterase-like Dieckmann cyclase in bacteria. There are a group of tetramates with unique skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, which remain to be investigated for their biosynthetic logics.
    RESULTS: Herein, the tetramate type compounds bripiodionen (BPD) and its new analog, featuring the rare skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, were discovered from the sponge symbiotic bacterial Streptomyces reniochalinae LHW50302. Gene deletion and mutant complementation revealed the production of BPDs being correlated with a PKS-NRPS biosynthetic gene cluster (BGC), in which a Dieckmann cyclase gene bpdE was identified by sit-directed mutations. According to bioinformatic analysis, the tetramic acid moiety of BPDs should be formed on an atypical NRPS module constituted by two discrete proteins, including the C (condensation)-A (adenylation)-T (thiolation) domains of BpdC and the A-T domains of BpdD. Further site-directed mutagenetic analysis confirmed the natural silence of the A domain in BpdC and the functional necessities of the two T domains, therefore suggesting that an unusual aminoacyl transthiolation should occur between the T domains of two NRPS subunits. Additionally, characterization of a LuxR type regulator gene led to seven- to eight-fold increasement of BPDs production. The study presents the first biosynthesis case of the natural molecule with 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Genomic mining using BpdD as probe reveals that the aminoacyl transthiolation between separate NRPS subunits should occur in a certain population of NRPSs in nature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    腺苷酸化(A)结构域是非核糖体肽合成酶(NRPS)所必需的,合成各种基于肽的天然产物,包括毒力因子,如铁载体和基因毒素。因此,A结构域的抑制可以减弱病原体的毒力。5'-O-N-(氨基酰基或芳基酰基)氨磺酰腺苷(AA-AMS)是NRPSA结构域的双底物小分子抑制剂。然而,AA-AMS的细菌细胞渗透性由于其高亲水性而通常是一个问题。在这项研究中,我们研究了在AMS支架中具有不同官能团的2'-OH修饰对与靶酶结合和细菌细胞渗透的影响。在2'-OH上具有氰基甲基基团的抑制剂7在小草菌素S生产者囊虫芽孢杆菌ATCC9999中显示出对重组和细胞内小草菌素S合成酶A(GrsA)的理想抑制活性,为开发新的A结构域抑制剂提供了替代支架。
    The adenylation (A) domain is essential for non-ribosomal peptide synthetases (NRPSs), which synthesize various peptide-based natural products, including virulence factors, such as siderophores and genotoxins. Hence, the inhibition of A-domains could attenuate the virulence of pathogens. 5\'-O-N-(Aminoacyl or arylacyl)sulfamoyladenosine (AA-AMS) is a bisubstrate small-molecule inhibitor of the A-domains of NRPSs. However, the bacterial cell permeability of AA-AMS is typically a problem owing to its high hydrophilicity. In this study, we investigated the influence of a modification of 2\'-OH in the AMS scaffold with different functional groups on binding to target enzymes and bacterial cell penetration. The inhibitor 7 with a cyanomethyl group at 2\'-OH showed desirable inhibitory activity against both recombinant and intracellular gramicidin S synthetase A (GrsA) in the gramicidin S-producer Aneurinibacillus migulanus ATCC 9999, providing an alternative scaffold to develop novel A-domain inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线虫诱导的诱捕装置的形成被认为是线虫诱捕真菌从腐生转变为食欲不振的生活方式的指标。然而,真菌杀线虫活性与真菌陷阱的形成并不完全同义。我们发现,主要的线虫诱捕真菌Arthrobotrys寡孢菌带有一个罕见的NRPS(Ao415)基因簇,该基因簇主要分布在线虫诱捕真菌中。Ao415基因推定编码一种具有独特结构域结构的蛋白质,与其他真菌中的其他NRPS不同。两个关键的生物合成基因Ao415和Ao414的突变结合非靶标代谢分析显示,Ao415基因簇负责异羟肟酸盐铁载体的生物合成,desferriferrichrome(1).脱铁醇(1)及其异羟肟酸盐前体(3)的缺乏可导致Fe3+含量显著增加,在没有线虫诱导剂的情况下诱导真菌陷阱的形成。此外,Fe3的添加大大改善了真菌陷阱的形成,但有害地导致陷阱破裂。添加1可显着减弱陷阱的形成,但增强了杀真菌线虫的活性。我们的发现表明,铁是陷阱形成的关键因素,并为线虫诱捕真菌中铁载体的潜在机制提供了新的见解。
    The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异三聚体G蛋白是G蛋白偶联受体(GPCR)信号传导中的关键介质,GPCR涉及许多重要的生理过程,因此是药物的主要靶标。环状缩肽YM-254890和FR900359是G蛋白Gq亚家族的强选择性抑制剂。据报道,FR900359最初是由不可培养的植物共生体生产的,然而,最近通过标准策略发现了一个可培养的FR900359生产商,从环境中筛选生产菌株。作为另一种策略,我们在这里介绍了提供不可培养的微生物来源的天然化合物的不同方式。因此,我们开始使用“体外模块编辑”技术,以YM-254890BGC为模板,为FR900359构建人工生物合成基因簇(BGC),首次开发用于I型PKSBGC的修饰,编辑YM-254890BGC。所得的编码FR900359的人工BGC在恶臭假单胞菌KT2440宿主菌株中异源表达。
    Heterotrimeric G proteins are key mediators in the signaling of G protein-coupled receptors (GPCR) that are involved in a plethora of important physiological processes and thus major targets of pharmaceutical drugs. The cyclic depsipeptides YM-254890 and FR900359 are strong and selective inhibitors of the Gq subfamily of G proteins. FR900359 was first reported to be produced by unculturable plant symbiont, however, a culturable FR900359 producer was discovered recently by the standard strategy, screening of the producing strain from the environment. As another strategy, we introduce herein the different way to supply natural compounds of unculturable microorganism origin. We therefore embarked on constructing an artificial biosynthetic gene cluster (BGC) for FR900359 with YM-254890 BGC as a template using \"in vitro module editing\" technology, first developed for the modification of type-I PKS BGCs, to edit YM-254890 BGC. The resulting artificial BGCs coding FR900359 were heterologously expressed in the Pseudomonas putida KT2440 host strain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号