neuroregeneration

神经再生
  • 文章类型: Journal Article
    由于神经再生的内在能力有限,周围神经损伤是临床治疗中的主要挑战。组织工程方法通过提供仿生支架和细胞来源来促进神经再生,从而提供了有希望的解决方案。在目前的工作中,我们调查了皮肤衍生祖细胞(SKPs)的潜在作用,它们被诱导成神经元和雪旺细胞(SCs),以及它们在组织工程神经移植物(TENGs)中的细胞外基质,以增强周围神经再生。在体外诱导SKP分化成神经元和SC,并并入由包括壳聚糖神经导管和丝素蛋白丝的生物相容性支架组成的神经移植物中。使用大鼠周围神经损伤模型进行的体内实验表明,与支架对照组相比,TENGs显着增强了神经再生,赶上自体移植组。组织学分析显示轴突再生改善,用这些TENGs治疗的动物的髓鞘形成和功能恢复。此外,免疫组织化学染色证实再生神经组织内存在诱导神经元和SC。我们的结果表明,组织工程神经移植物中SKP诱导的神经元和SCs具有促进周围神经再生的巨大潜力,并且是周围神经损伤治疗中临床转化的有希望的方法。这些工程化构建体的进一步优化和表征是必要的,以改善其临床适用性和功效。
    Peripheral nerve injury is a major challenge in clinical treatment due to the limited intrinsic capacity for nerve regeneration. Tissue engineering approaches offer promising solutions by providing biomimetic scaffolds and cell sources to promote nerve regeneration. In the present work, we investigated the potential role of skin-derived progenitors (SKPs), which are induced into neurons and Schwann cells (SCs), and their extracellular matrix in tissue-engineered nerve grafts (TENGs) to enhance peripheral neuroregeneration. SKPs were induced to differentiate into neurons and SCs in vitro and incorporated into nerve grafts composed of a biocompatible scaffold including chitosan neural conduit and silk fibroin filaments. In vivo experiments using a rat model of peripheral nerve injury showed that TENGs significantly enhanced nerve regeneration compared to the scaffold control group, catching up with the autograft group. Histological analysis showed improved axonal regrowth, myelination and functional recovery in animals treated with these TENGs. In addition, immunohistochemical staining confirmed the presence of induced neurons and SCs within the regenerated nerve tissue. Our results suggest that SKP-induced neurons and SCs in tissue-engineered nerve grafts have great potential for promoting peripheral nerve regeneration and represent a promising approach for clinical translation in the treatment of peripheral nerve injury. Further optimization and characterization of these engineered constructs is warranted to improve their clinical applicability and efficacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓损伤(SCI)对于恢复功能的治疗选择有限。脂肪来源的干细胞(ADSC)由于其分化成多种细胞类型的能力而显示出希望,促进神经细胞存活,调节炎症。这篇综述探讨了ADSC治疗SCI,重点是其改善功能的潜力,临床前和早期临床试验进展,挑战,和未来的方向。临床前研究已经证明ADSC移植在促进功能恢复方面的有效性,减少空腔形成,增强神经再生和髓鞘修复.为了提高ADSC的疗效,正在探索包括基因改造和与康复相结合的策略。早期的临床试验显示了安全性和可行性,一些人建议改善运动和感觉功能。临床翻译仍然面临挑战,包括优化细胞存活和递送,确定剂量,解决肿瘤形成风险,建立标准化协议。未来的研究应该专注于克服这些挑战,并探索将ADSC疗法与其他疗法相结合的潜力。包括康复和药物治疗。
    Spinal cord injury (SCI) has limited treatment options for regaining function. Adipose-derived stem cells (ADSCs) show promise owing to their ability to differentiate into multiple cell types, promote nerve cell survival, and modulate inflammation. This review explores ADSC therapy for SCI, focusing on its potential for improving function, preclinical and early clinical trial progress, challenges, and future directions. Preclinical studies have demonstrated ADSC transplantation\'s effectiveness in promoting functional recovery, reducing cavity formation, and enhancing nerve regrowth and myelin repair. To improve ADSC efficacy, strategies including genetic modification and combination with rehabilitation are being explored. Early clinical trials have shown safety and feasibility, with some suggesting motor and sensory function improvements. Challenges remain for clinical translation, including optimizing cell survival and delivery, determining dosing, addressing tumor formation risks, and establishing standardized protocols. Future research should focus on overcoming these challenges and exploring the potential for combining ADSC therapy with other treatments, including rehabilitation and medication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    螺旋神经节神经元(SGNs)损伤可引起耳聋。一种重要的治疗方法涉及利用干细胞来恢复受损的听觉电路。然而,研究方法的不充分实施对准确评估电路中衍生细胞的功能提出了挑战。这里,我们描述了一种将人胚胎干细胞(hESC)转化为耳神经元(ON)的新方法,并使用光遗传学方法与细胞或共培养大鼠耳蜗核(CN)的器官型切片评估其功能连接。与耳蜗核神经元(CNN)共培养时,胚胎干细胞衍生的耳神经元(eON)表现出SGN标记表达并产生功能性突触连接。在脑片的耳蜗核中发现了突触素1和VGLUT的表达,在eON和CN脑切片共培养期间,eON预测了过程。CNN的动作电位尖峰和INa+/IK+随着对eON的光刺激而增加。这些发现提供了进一步的证据,证明eON可能是治疗SGN耳聋的候选来源。
    Spiral ganglia neurons (SGNs) impairment can cause deafness. One important therapeutic approach involves utilizing stem cells to restore impaired auditory circuitry. Nevertheless, the inadequate implementation of research methodologies poses a challenge in accurately assessing the functionality of derived cells within the circuit. Here, we describe a novel method for converting human embryonic stem cells (hESCs) into otic neurons (ONs) and assess their functional connectivity using an optogenetic approach with cells or an organotypic slice of rat cochlear nucleus (CN) in coculture. Embryonic stem cell-derived otic neurons (eONs) exhibited SGN marker expression and generated functional synaptic connection when cocultured with cochlear nucleus neurons (CNNs). Synapsin 1 and VGLUT expression are found in the cochlear nucleus of brain slices, where eONs projected processes during the coculture of eONs and CN brain slices. Action potential spikes and INa+/IK+ of CNNs increased in tandem with light stimulations to eONs. These findings provide further evidence that eONs may be a candidate source to treat SGN-deafness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊髓损伤(SCI)是一种与长期身体和功能残疾有关的衰弱状况。在过去的三十年中,我们对SCI发病机理的理解有了显着发展。并行,在优化SCI患者的管理方面取得了重大进展.早期手术减压,充分的骨减压和扩张腔内成形术是可能改善SCI患者神经和功能结局的手术策略.此外,SCI的非手术管理取得了进展,包括优化重症监护环境中的血流动力学管理。在临床前研究中还研究了几种有希望的疗法,其中一些被转化为临床试验。鉴于最近对推进精准医学的兴趣,已经进行了几项调查来描绘成像的作用,脑脊液(CSF)和血清生物标志物在预测SCI患者预后和制定个体化治疗计划中的作用。最后,生物力学和生物工程的技术进步也以神经调节和脑机接口的形式在SCI管理中发挥了作用。
    Spinal cord injury (SCI) is a debilitating condition that is associated with long-term physical and functional disability. Our understanding of the pathogenesis of SCI has evolved significantly over the past three decades. In parallel, significant advances have been made in optimizing the management of patients with SCI. Early surgical decompression, adequate bony decompression and expansile duraplasty are surgical strategies that may improve neurological and functional outcomes in patients with SCI. Furthermore, advances in the non-surgical management of SCI have been made, including optimization of hemodynamic management in the critical care setting. Several promising therapies have also been investigated in pre-clinical studies, with some being translated into clinical trials. Given the recent interest in advancing precision medicine, several investigations have been performed to delineate the role of imaging, cerebral spinal fluid (CSF) and serum biomarkers in predicting outcomes and curating individualized treatment plans for SCI patients. Finally, technological advancements in biomechanics and bioengineering have also found a role in SCI management in the form of neuromodulation and brain-computer interfaces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管周围神经损伤(PNI)的内在修复,仔细监测周围神经修复过程很重要,作为周围神经再生是缓慢和不完全的大型创伤性病变。因此,具有保护和再生功能的间充质干细胞(MSC)与创新的微/纳米技术协同利用,以增强周围神经的再生过程。尽管如此,由于MSCs使用标准的再生标准进行评估,包括感觉运动指数,结构特征,和形态学,区分MSCs对神经组织的保护和再生影响具有挑战性。本研究旨在分析神经再生的过程,特别是有和没有协同方法的MSC的性能。它还专注于MSCs的旁分泌分泌及其转化为具有影响PNI后神经再生的功能特性的神经元。此外,该研究通过考虑MSCs和治疗化合物的协同作用,探索了PNI后神经再生的新思路,神经元细胞衍生物,生物或聚合物导管,有机/无机纳米粒子,和电刺激。最后,该研究强调了PNI后神经再生协同作用的主要障碍,并旨在根据神经组织再生的最新进展打开新的窗口。
    Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这里,通过证明有丝分裂后肠神经元(EN)的神经支配潜力,我们确定可塑性存在于出生后肠神经系统中。使用BAF53b-Cre小鼠进行选择性神经元示踪,在多个模型系统中显示了成熟的产后EN的神经支配能力。分离的ENs在体外再生神经突,神经突复杂性和方向受与肠胶质细胞(EGC)接触的影响。来自移植EN的神经纤维仅与固有肌层内的EGC连接并沿着EGC传播。居民EGCs在Cre依赖性ENs消融后持续存在,并控制肠肌间神经丛的结构以恢复ENs的神经,如神经纤维投影追踪所示。体内移植和光遗传学实验突出了有丝分裂后神经元的快速神经支配潜力,导致2周内恢复肠道肌肉收缩活动。这些研究说明了有丝分裂后ENs的结构和功能神经支配能力以及EGC在引导和图案化其轨迹中的关键作用。
    Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    临床前动物实验。
    在这项研究中,我们研究了水飞蓟宾在脊髓损伤(SCI)模型中的治疗效果.在SCI中,由于继发性损伤机制引起的细胞损失超过了由原发性损伤引起的细胞损失。Ferroptosis,铁依赖性非凋亡性细胞死亡,已证明对SCI的发病机制有影响。
    使用总共78只成年雄性/雌性SpragueDawley大鼠作为体内实验进行研究。组如下:Sham,SCI,去铁胺(DFO)治疗,和水飞蓟宾治疗。有随访时间为24小时的亚组,72小时,6周所有组。丙二醛(MDA),谷胱甘肽(GSH),和Fe2+水平通过分光光度法测量。谷胱甘肽过氧化物酶-4(GPX4),铁电(FPN),转铁蛋白受体(TfR1),和4-羟基壬烯醛(4-HNE)修饰的蛋白质水平通过蛋白质印迹法评估。使用Basso-Beattie-Bresnahan试验评估功能恢复。
    水飞蓟宾在72小时和6周组与SCI相比均实现了MDA和4-HNE水平的显着抑制(p<0.05)。GSH,发现GPX4和FNP水平在水飞蓟宾24小时内显着较高,72小时,6周组与相应SCI组比较(p<0.05)。在72h和6周组的水飞蓟宾处理的大鼠中观察到铁水平的显著降低(p<0.05)。水飞蓟宾在24h和72h组中显著抑制TfR1水平(p<0.05)。观察到恢复能力之间的显著差异如下:水飞蓟宾>DFO>SCI(p<0.05)。
    水飞蓟宾对铁代谢和脂质过氧化的影响,这两者都是铁中毒的特征,可能有助于治疗活动。在此背景下,我们的研究结果认为水飞蓟宾是SCI模型中具有抗生育特性的潜在治疗候选药物.能够有效且安全地减轻铁细胞死亡的治疗剂具有成为未来临床研究的关键点的潜力。
    UNASSIGNED: Pre-clinical animal experiment.
    UNASSIGNED: In this study, we investigated therapeutic effects of silibinin in a spinal cord injury (SCI) model. In SCI, loss of cells due to secondary damage mechanisms exceeds that caused by primary damage. Ferroptosis, which is iron-dependent non-apoptotic cell death, is shown to be influential in the pathogenesis of SCI.
    UNASSIGNED: The study was conducted as an in vivo experiment using a total of 78 adult male/female Sprague Dawley rats. Groups were as follows: Sham, SCI, deferoxamine (DFO) treatment, and silibinin treatment. There were subgroups with follow-up periods of 24 h, 72 h, and 6 weeks in all groups. Malondialdehyde (MDA), glutathione (GSH), and Fe2+ levels were measured by spectrophotometry. Glutathione peroxidase-4 (GPX4), ferroportin (FPN), transferrin receptor (TfR1), and 4-hydroxynonenal (4-HNE)-modified protein levels were assessed by Western blotting. Functional recovery was assessed using Basso-Beattie-Bresnahan test.
    UNASSIGNED: Silibinin achieved significant suppression in MDA and 4-HNE levels compared to the SCI both in 72-h and 6 weeks group (p < 0.05). GSH, GPX4, and FNP levels were found to be significantly higher in the silibinin 24 h, 72 h, and 6 weeks group compared to corresponding SCI groups (p < 0.05). Significant reduction in iron levels was observed in silibinin treated rats in 72 h and 6 weeks group (p < 0.05). Silibinin substantially suppressed TfR1 levels in 24 h and 72 h groups (p < 0.05). Significant difference among recovery capacities was observed as follows: Silibinin > DFO > SCI (p < 0.05).
    UNASSIGNED: Impact of silibinin on iron metabolism and lipid peroxidation, both of which are features of ferroptosis, may contribute to therapeutic activity. Within this context, our findings posit silibinin as a potential therapeutic candidate possessing antiferroptotic properties in SCI model. Therapeutic agents capable of effectively and safely mitigating ferroptotic cell death hold the potential to be critical points of future clinical investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人工智能(AI)和机器学习(ML)在各种医疗领域显示出希望,包括医学成像,精确的诊断,和药物研究。在神经科学和神经外科,AI/ML的进步增强了脑机接口,神经假体,和手术计划。他们准备通过解开神经系统的复杂性来彻底改变神经再生。然而,关于AI/ML在神经再生中的研究是支离破碎的,需要进行全面审查。坚持系统审查和荟萃分析(PRISMA)建议的首选报告项目,从总共247篇中选择了19篇专注于AI/ML在神经再生中的英文论文。两名研究人员使用混合方法评估工具(MMAT)2018独立进行数据提取和质量评估。八项研究被认为是高质量的,10中度,四个低。主要目标包括诊断神经系统疾病(35%),机器人康复(18%),和药物发现(各12%)。方法范围从分析成像数据(24%)到动物模型(24%)和电子健康记录(12%)。深度学习占AI/ML技术的41%,而标准ML算法占29%。该评论强调了对AI/ML用于神经再生医学的兴趣日益增长,随着出版物的增加。这些技术有助于通过机器人技术和有针对性的刺激来诊断疾病并促进功能恢复。AI驱动的药物发现有望识别神经再生疗法。尽管如此,在这个快速发展的领域,解决现有的限制仍然至关重要。
    Artificial intelligence (AI) and machine learning (ML) show promise in various medical domains, including medical imaging, precise diagnoses, and pharmaceutical research. In neuroscience and neurosurgery, AI/ML advancements enhance brain-computer interfaces, neuroprosthetics, and surgical planning. They are poised to revolutionize neuroregeneration by unraveling the nervous system\'s complexities. However, research on AI/ML in neuroregeneration is fragmented, necessitating a comprehensive review. Adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, 19 English-language papers focusing on AI/ML in neuroregeneration were selected from a total of 247. Two researchers independently conducted data extraction and quality assessment using the Mixed Methods Appraisal Tool (MMAT) 2018. Eight studies were deemed high quality, 10 moderate, and four low. Primary goals included diagnosing neurological disorders (35%), robotic rehabilitation (18%), and drug discovery (12% each). Methods ranged from analyzing imaging data (24%) to animal models (24%) and electronic health records (12%). Deep learning accounted for 41% of AI/ML techniques, while standard ML algorithms constituted 29%. The review underscores the growing interest in AI/ML for neuroregenerative medicine, with increasing publications. These technologies aid in diagnosing diseases and facilitating functional recovery through robotics and targeted stimulation. AI-driven drug discovery holds promise for identifying neuroregenerative therapies. Nonetheless, addressing existing limitations remains crucial in this rapidly evolving field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号