neuron types

神经元类型
  • 文章类型: Journal Article
    具有数据驱动的生理细节的计算模拟可以促进对认知中涉及的神经机制的更深入理解。这里,我们利用Hippencome.org的大量细胞特性,通过内侧内嗅皮层回路活动的尖峰连续吸引子网络模型研究空间编码的神经机制。主要目标是调查添加这样的现实约束是否可以产生类似于在真实神经元中测量的放电模式。工作中包含的生物学特征是兴奋性,连通性,和神经元类型的突触信号主要由它们的轴突和树突形态定义。我们研究了特定神经元类型的尖峰动力学以及神经元组之间的突触活动。对啮齿动物海马结构进行建模将模拟保持在计算上合理的规模,同时还将参数和结果锚定到实验测量。我们的模型生成的网格细胞活动与间距非常匹配,尺寸,以及从已发布的数据集和为本研究进行的新实验中记录的实时行为动物的网格场的发射率。我们的模拟还重建了这些属性的不同尺度,例如,又小又大,沿着内侧内嗅皮层的背腹轴发现。对神经元和突触模型参数的计算探索表明,在模拟中,广泛的神经特性会产生网格场。这些结果表明,网格细胞的连续吸引子网络模型与来自海马组织的数据驱动的生物物理和解剖参数的尖峰神经网络实现兼容。该软件(版本1.0)作为开源发布,以实现广泛的社区重用并鼓励新颖的应用程序。
    Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal is to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software (version 1.0) is released as open source to enable broad community reuse and encourage novel applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    具有数据驱动的生理细节的计算模拟可以促进对认知中涉及的神经机制的更深入理解。这里,我们利用Hippencome.org的大量细胞特性,通过内侧内嗅皮层回路活动的尖峰连续吸引子网络模型研究空间编码的神经机制。主要目标是调查添加这样的现实约束是否可以产生类似于在真实神经元中测量的放电模式。工作中包含的生物学特征是兴奋性,连通性,和神经元类型的突触信号主要由它们的轴突和树突形态定义。我们研究了特定神经元类型的尖峰动力学以及神经元组之间的突触活动。对啮齿动物海马结构进行建模将模拟保持在计算上合理的规模,同时还将参数和结果锚定到实验测量。我们的模型生成的网格细胞活动与间距非常匹配,尺寸,以及从已发布的数据集和为本研究进行的新实验中记录的实时行为动物的网格场的发射率。我们的模拟还重建了这些属性的不同尺度,例如,又小又大,沿着内侧内嗅皮层的背腹轴发现。对神经元和突触模型参数的计算探索表明,在模拟中,广泛的神经特性会产生网格场。这些结果表明,网格细胞的连续吸引子网络模型与来自Hippocampome.org的数据驱动的生物物理和解剖参数的尖峰神经网络实现兼容。该软件以开源形式发布,以实现广泛的社区重用并鼓励新颖的应用程序。
    Computational simulations with data-driven physiological detail can foster a deeper understanding of the neural mechanisms involved in cognition. Here, we utilize the wealth of cellular properties from Hippocampome.org to study neural mechanisms of spatial coding with a spiking continuous attractor network model of medial entorhinal cortex circuit activity. The primary goal was to investigate if adding such realistic constraints could produce firing patterns similar to those measured in real neurons. Biological characteristics included in the work are excitability, connectivity, and synaptic signaling of neuron types defined primarily by their axonal and dendritic morphologies. We investigate the spiking dynamics in specific neuron types and the synaptic activities between groups of neurons. Modeling the rodent hippocampal formation keeps the simulations to a computationally reasonable scale while also anchoring the parameters and results to experimental measurements. Our model generates grid cell activity that well matches the spacing, size, and firing rates of grid fields recorded in live behaving animals from both published datasets and new experiments performed for this study. Our simulations also recreate different scales of those properties, e.g., small and large, as found along the dorsoventral axis of the medial entorhinal cortex. Computational exploration of neuronal and synaptic model parameters reveals that a broad range of neural properties produce grid fields in the simulation. These results demonstrate that the continuous attractor network model of grid cells is compatible with a spiking neural network implementation sourcing data-driven biophysical and anatomical parameters from Hippocampome.org. The software is released as open source to enable broad community reuse and encourage novel applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    盆腔器官(膀胱,直肠,和性器官)已经代表了一个世纪,因为通过共享的接力从两个途径接受自主神经支配-腰交感神经和骶骨副交感神经,骨盆神经节,被认为是交感神经和副交感神经元的集合。使用单细胞RNA测序,我们发现小鼠骨盆神经节由四类神经元组成,不同于交感神经和副交感神经,尽管与前者有血缘关系,但不是后者,通过复杂的遗传签名。我们还表明,脊柱腰椎节前神经元在骨盆神经节中突触到相等数量的去甲肾上腺素能和胆碱能细胞上,因此,两者都充当交感神经继电器。因此,盆腔内脏不接受来自副交感神经或典型交感神经元的神经支配,而是从交感神经链的不同尾端,负责其特殊功能。
    The pelvic organs (bladder, rectum, and sex organs) have been represented for a century as receiving autonomic innervation from two pathways - lumbar sympathetic and sacral parasympathetic - by way of a shared relay, the pelvic ganglion, conceived as an assemblage of sympathetic and parasympathetic neurons. Using single-cell RNA sequencing, we find that the mouse pelvic ganglion is made of four classes of neurons, distinct from both sympathetic and parasympathetic ones, albeit with a kinship to the former, but not the latter, through a complex genetic signature. We also show that spinal lumbar preganglionic neurons synapse in the pelvic ganglion onto equal numbers of noradrenergic and cholinergic cells, both of which therefore serve as sympathetic relays. Thus, the pelvic viscera receive no innervation from parasympathetic or typical sympathetic neurons, but instead from a divergent tail end of the sympathetic chains, in charge of its idiosyncratic functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    下丘(IC)是中枢听觉通路中的关键计算枢纽。从它在中脑的位置来看,IC接收来自下听觉脑干的几乎所有上升输出,并为丘脑皮质系统提供听觉信息的主要来源。除了是听觉电路的十字路口,IC具有丰富的局部电路,包含的神经元是下听觉脑干核的五倍多。这些结果暗示了IC的巨大计算能力,事实上,系统级研究已经确定了在IC中发生的声音编码中的许多重要转换。然而,尽管几十年的努力,IC计算的细胞机制以及这些计算在听力损失后的变化在很大程度上仍然难以理解。在这次审查中,我们认为,由于识别包含IC的神经元类型和电路基序的令人惊讶的困难问题,这一挑战仍然存在。在总结了指向IC中神经元类型多样性的大量证据之后,我们强调了最近使用分子标记来定义神经元类型来解析这种复杂性的努力的成功。我们得出结论,认为分子可识别的神经元类型的发现开启了以分子靶向记录和操作为标志的IC研究的新时代。我们建议,在神经元水平上可重复研究IC电路的能力将导致在理解驱动IC计算的基本机制以及这些机制在听力损失后如何变化方面的快速发展。
    The inferior colliculus (IC) is a critical computational hub in the central auditory pathway. From its position in the midbrain, the IC receives nearly all the ascending output from the lower auditory brainstem and provides the main source of auditory information to the thalamocortical system. In addition to being a crossroads for auditory circuits, the IC is rich with local circuits and contains more than five times as many neurons as the nuclei of the lower auditory brainstem combined. These results hint at the enormous computational power of the IC, and indeed, systems-level studies have identified numerous important transformations in sound coding that occur in the IC. However, despite decades of effort, the cellular mechanisms underlying IC computations and how these computations change following hearing loss have remained largely impenetrable. In this review, we argue that this challenge persists due to the surprisingly difficult problem of identifying the neuron types and circuit motifs that comprise the IC. After summarizing the extensive evidence pointing to a diversity of neuron types in the IC, we highlight the successes of recent efforts to parse this complexity using molecular markers to define neuron types. We conclude by arguing that the discovery of molecularly identifiable neuron types ushers in a new era for IC research marked by molecularly targeted recordings and manipulations. We propose that the ability to reproducibly investigate IC circuits at the neuronal level will lead to rapid advances in understanding the fundamental mechanisms driving IC computations and how these mechanisms shift following hearing loss.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    维持神经元伴侣之间的精确突触接触对于确保哺乳动物中枢神经系统(CNS)的正常功能至关重要。多种细胞识别分子,如经典钙粘蛋白(Cdhs),是在发育和突触维持过程中介导突触选择的分子机制的一部分。然而,控制跨不同CNS神经元类型的神经元-神经元布线的原理仍然未知。视网膜突触,从视网膜神经节细胞(RGC)到上丘(SC)神经元的连接,提供了一个理想的实验系统来揭示分子逻辑基础的突触选择和形成。这是由于视网膜向SC的单向和层状限制投射以及突触前RGC亚型和突触后SC神经元类型的大型数据库。这里,我们专注于确定II型Cdhs在连接视网膜突触中的作用。我们以神经元分辨率调查了Cdhs的表达模式,并揭示了Cdh13在浅表SC(sSC)的广场神经元中富集。在宽场神经元内的Cdh13空突变体或选择性成体缺失中,在两性中,这些神经元的远端树突中的脊柱密度均显着降低。此外,从突触前RGC中去除Cdh13可减少突触后广场神经元中的树突棘。表达Cdh13的RGC使用与αRGC和开-关方向选择性神经节细胞(ooDSGC)不同的机制来形成特定的视网膜突触。结果表明,Cdh13介导的选择性跨神经元相互作用可在体内维持适当的视网膜突触意义陈述钙黏着蛋白(Cdh)分子家族与视网膜内回路中的选择性突触识别有关。然而,它们在连接CNS电路其余部分中的作用仍有待探索。视网膜突触代表了一个已建立的模型,用于理解不同突触前和突触后神经元类型之间的选择性神经电路布线。我们首先表明Cdh13在限制性上丘神经元中富集。我们发现一个II型Cdh,Cdh13允许从视网膜到上丘的细胞类型特异性脊柱维持。这些结果揭示了差异Cdh表达如何引导细胞类型特异性布线超出视网膜进入哺乳动物CNS的其余部分。在这项研究中建立的细胞和分子机制可能进一步提供对大脑其余部分中II型Cdh相关认知障碍的理解。
    Maintaining precise synaptic contacts between neuronal partners is critical to ensure the proper functioning of the mammalian central nervous system (CNS). Diverse cell recognition molecules, such as classic cadherins (Cdhs), are part of the molecular machinery mediating synaptic choices during development and synaptic maintenance. Yet, the principles governing neuron-neuron wiring across diverse CNS neuron types remain largely unknown. The retinotectal synapses, connections from the retinal ganglion cells (RGCs) to the superior collicular (SC) neurons, offer an ideal experimental system to reveal molecular logic underlying synaptic choices and formation. This is due to the retina\'s unidirectional and laminar-restricted projections to the SC and the large databases of presynaptic RGC subtypes and postsynaptic SC neuronal types. Here, we focused on determining the role of Type II Cdhs in wiring the retinotectal synapses. We surveyed Cdhs expression patterns at neuronal resolution and revealed that Cdh13 is enriched in the wide-field neurons in the superficial SC (sSC). In either the Cdh13 null mutant or selective adult deletion within the wide-field neurons, there is a significant reduction of spine densities in the distal dendrites of these neurons in both sexes. Additionally, Cdh13 removal from presynaptic RGCs reduced dendritic spines in the postsynaptic wide-field neurons. Cdh13-expressing RGCs use differential mechanisms than αRGCs and On-Off Direction-Selective Ganglion Cells (ooDSGCs) to form specific retinotectal synapses. The results revealed a selective transneuronal interaction mediated by Cdh13 to maintain proper retinotectal synapses in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杏仁核是脊椎动物端脑中复杂的脑结构,对于调节社会行为至关重要,情感和(社会)认知。与哺乳动物杏仁核的许多核中描述的绝大多数神经元类型相反,关于非哺乳动物的神经元多样性知之甚少,使其演变的重建特别困难。这里,我们表征了两栖动物侧耳的杏仁核中的谷氨酸能神经元类型。我们的单细胞RNA测序数据表明sal杏仁核中至少存在十种不同类型和亚型的谷氨酸能神经元。这些神经元类型在分子上不同于腹侧大脑皮层的神经元,这表明,在端脑中,杏仁核和腹侧大脑皮层是两个独立的区域。标记基因的原位杂交表明杏仁核谷氨酸能神经元类型位于三个主要分支中:杏仁核外侧,内侧杏仁核,以及一个新定义的区域,该区域由转录因子Sim1的高表达划定。这些神经元类型的基因表达谱表明与鼠尾草和哺乳动物杏仁核中的特定神经元相似。特别是,我们确定Sim1+和Sim1+Otp+表达神经元类型,可能与外侧嗅道(NLOT)的哺乳动物核和内侧杏仁核的下丘脑衍生神经元同源,分别。一起来看,我们的结果揭示了sal杏仁核中令人惊讶的谷氨酸能神经元类型的多样性,尽管他们的大脑解剖简单。这些结果为四足动物祖先杏仁核的细胞和解剖复杂性提供了新的见解。
    The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管它与其他大脑区域的紧密连接表明caustrum参与了更高级的大脑功能,人们对锁骨神经元的特性知之甚少。使用全细胞膜片钳记录小鼠急性脑切片,我们表征了300多个claustral神经元的固有电特性,并使用这些特性的无监督聚类来定义不同的细胞类型。内在性质的差异允许中间神经元(IN)与投射神经元(PN)分离。通过对动作电位(AP)频率和振幅的适应性差异,可以进一步确定PN的五个亚型。以及他们的AP射击可变性。逆行传输的荧光珠的注射表明,PN亚型的投射目标不同:一个仅投射到皮质下区域,而其余四个目标皮质区域中有三个。INs表达小白蛋白(PV),生长抑素(SST),或血管活性肠肽(VIP)形成异源性基团。PV-INs很容易与VIP-INs和SST-INs区分开来,而后两者聚集在一起。为了区分IN亚型,训练人工神经网络来区分PV-IN的属性,SST-IN,和VIP-IN,通过其标记蛋白的表达独立鉴定。一个用户友好的,机器学习工具,使用固有的电特性来区分这八种不同类型的claustral细胞开发,以促进我们的分类方案的实施。锁骨神经元的系统分类为未来确定锁骨电路功能奠定了基础,这将提高我们对caustrum在大脑功能中的作用的理解。
    Although its dense connections with other brain areas suggests that the claustrum is involved in higher-order brain functions, little is known about the properties of claustrum neurons. Using whole-cell patch clamp recordings in acute brain slices of mice, we characterized the intrinsic electrical properties of more than 300 claustral neurons and used unsupervised clustering of these properties to define distinct cell types. Differences in intrinsic properties permitted separation of interneurons (INs) from projection neurons (PNs). Five subtypes of PNs could be further identified by differences in their adaptation of action potential (AP) frequency and amplitude, as well as their AP firing variability. Injection of retrogradely transported fluorescent beads revealed that PN subtypes differed in their projection targets: one projected solely to subcortical areas while three out of the remaining four targeted cortical areas. INs expressing parvalbumin (PV), somatostatin (SST), or vasoactive intestinal peptide (VIP) formed a heterogenous group. PV-INs were readily distinguishable from VIP-INs and SST-INs, while the latter two were clustered together. To distinguish IN subtypes, an artificial neural network was trained to distinguish the properties of PV-INs, SST-INs, and VIP-INs, as independently identified through their expression of marker proteins. A user-friendly, machine-learning tool that uses intrinsic electrical properties to distinguish these eight different types of claustral cells was developed to facilitate implementation of our classification scheme. Systematic classification of claustrum neurons lays the foundation for future determinations of claustrum circuit function, which will advance our understanding of the role of the claustrum in brain function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在下丘(ICC)的中央核,作为听觉通路的枢纽,声音如何被不同的细胞类型编码在很大程度上是未知的。与小的GABA能和谷氨酸能(GLU)细胞相比,大的GABA能细胞被广泛调节为纯音,并且对调频扫描的反应更强烈。神经元,尤其是GLU细胞,它们共享调谐和扫描灵敏度的清晰度,在空间上聚集在ICC内部。树突树的形态以及兴奋性和抑制性输入的空间分布部分解释了细胞类型之间反应性的差异。结果表明,每个ICC细胞类型具有特定的声音编码策略,这部分是由细胞的形态特征和位置决定的,并以不同的方式在更高的中心贡献信息编码。
    在较高的听觉中枢中控制声音信息编码的规则在很大程度上是未知的。在下丘(ICC)的中央核,作为听觉通路的枢纽,已经提出但尚未建立除音调视性以外的功能图的存在,由于单个微域的响应特性存在明显的异质性。由于每个ICC细胞类型都有不同的神经元电路,每种细胞类型可能编码不同的声音信息。这里,来自男女大鼠ICC的细胞间记录显示,大的GABA能(LG),小GABA能(SG)和谷氨酸能(GLU)细胞编码不同的声音信息。与SG和GLU单元相比,LG单元被广泛地调谐并且对调频扫描的响应更强。在人口层面,对扫描的响应取决于位置:对扫描的响应在GLU单元的本地集群中共享,而扫描的方向选择性在LG细胞的本地集群中共享。树突树的形态以及兴奋性和抑制性输入的空间分布部分解释了细胞类型之间反应性的差异。LG神经元有一个密集的局部轴突丛,向多个远处的目标投射纤维,而GLU投射神经元主要针对单个,远离目标,局部络脉密度较低。这些结果表明,每个ICC细胞类型具有特定的声音编码策略,这部分是由细胞的形态特征和位置决定的,不同的细胞类型以不同的方式在较高的中心贡献信息编码。
    In the central nucleus of the inferior colliculus (ICC), which acts as the hub of the auditory pathways, how the sound is coded by distinct cell types is largely unknown. Large GABAergic cells are tuned broadly to pure tones and respond more strongly to frequency-modulated sweeps than small GABAergic and glutamatergic (GLU) cells. Neurons, especially GLU cells, which share sharpness of tuning and sweep sensitivity, were spatially clustered inside the ICC. The difference in responsiveness between cell types was partially explained by the morphology of dendritic trees and the spatial distributions of excitatory and inhibitory inputs. The results suggest that each ICC cell type has a particular sound-encoding strategy, which is partially determined by the morphological characteristics and location of cells, and contributes information coding in higher centres in different ways.
    The rules governing the encoding of sound information in the higher auditory centres are largely unknown. In the central nucleus of the inferior colliculus (ICC), which acts as the hub of the auditory pathways, the presence of functional maps other than tonotopicity has been suggested but not established, due to significant heterogeneity in the response properties of single microdomains. Since each ICC cell type has distinct neuronal circuitry, each cell type might encode sound information differently. Here, juxtacellular recording from rat ICC of both sexes revealed that large GABAergic (LG), small GABAergic (SG) and glutamatergic (GLU) cells encode sound information differently. LG cells are broadly tuned and respond more strongly to frequency-modulated sweeps than SG and GLU cells. At a population level, responsiveness to sweeps is location dependent: the responsiveness to sweeps is shared in local clusters of GLU cells, whereas that to directional selectivity of sweeps is shared in local clusters of LG cells. The difference in responsiveness between cell types was partially explained by the morphology of dendritic trees and the spatial distributions of excitatory and inhibitory inputs. LG neurons had a dense local axonal plexus with projection fibres to multiple distant targets, whereas GLU projection neurons mainly aimed at a single, distant target and had less dense local collaterals. These results suggest that each ICC cell type has a particular sound-encoding strategy, which is partially determined by the morphological characteristics and location of the cell, and the different cell types contribute information coding in higher centres in different ways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    寻求对稳态的新见解,皮质突触网络的调制和可塑性,我们分析了22,439只小鼠新皮质神经元的单细胞RNA-seq研究结果。我们的分析揭示了转录组学证据,证明了数十个分子上不同的神经肽能调节网络直接互连所有皮质神经元。该证据始于发现一种或多种神经肽前体(NPP)和一种或多种神经肽选择性G蛋白偶联受体(NP-GPCR)基因的转录物全部丰富,或者几乎所有,皮质神经元。单个神经元表达来自编码18个NPP和29个NP-GPCR的调色板的NP信号基因的不同子集。这47个基因包含37个同源NPP/NP-GPCR对,暗示局部神经肽信号传导的可能性。这里,我们使用神经元类型特异性的NP基因表达模式来提供特定的,关于37个肽能神经调节网络的可测试预测,这些网络可能在皮质稳态和可塑性中起重要作用。
    Seeking new insights into the homeostasis, modulation and plasticity of cortical synaptic networks, we have analyzed results from a single-cell RNA-seq study of 22,439 mouse neocortical neurons. Our analysis exposes transcriptomic evidence for dozens of molecularly distinct neuropeptidergic modulatory networks that directly interconnect all cortical neurons. This evidence begins with a discovery that transcripts of one or more neuropeptide precursor (NPP) and one or more neuropeptide-selective G-protein-coupled receptor (NP-GPCR) genes are highly abundant in all, or very nearly all, cortical neurons. Individual neurons express diverse subsets of NP signaling genes from palettes encoding 18 NPPs and 29 NP-GPCRs. These 47 genes comprise 37 cognate NPP/NP-GPCR pairs, implying the likelihood of local neuropeptide signaling. Here, we use neuron-type-specific patterns of NP gene expression to offer specific, testable predictions regarding 37 peptidergic neuromodulatory networks that may play prominent roles in cortical homeostasis and plasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    啮齿动物海马的细胞和突触结构已在数千种同行评审的出版物中进行了描述。然而,对于这个或任何其他神经系统,不存在人类或机器可读的突触电生理数据公共目录。利用最先进的信息技术,我们开发了一个基于云的工具集,用于从与突触电生理学有关的科学文献中识别经验证据,为了提取感兴趣的实验数据,并将每个条目链接到相关文本或图形摘录。挖掘1200多篇发表的期刊文章,我们已经确定了八种不同的信号模式,通过90种不同的方法量化来测量突触振幅,动力学,海马神经元的可塑性。我们设计了一种数据结构,既反映了差异,又保持了实验方式之间的现有关系。此外,我们将每个带注释的实验映射到确定的潜在连接,也就是说,特定的突触前和突触后神经元类型对。为了这个目标,我们利用了Hippocencome.org,形态学的开放获取知识库,电生理学,以及啮齿动物海马结构中具有分子特征的神经元类型。具体来说,我们已经实现了一个计算管道,以系统地将神经元类型属性转换为形式查询,以便找到所有兼容的潜在连接。有了这个系统,我们已经收集了近40,000个突触数据实体,覆盖了海马中3,120个潜在连接的88%。相对于液体连接电位校正膜电位显着降低了理论和实验反转电位之间的差异,从而能够将所有突触幅度精确转换为电导。该数据集允许对支配突触信号的一般规则进行大规模假设检验。为了说明这些应用,我们证实了突触测量值与其协变量之间的几个预期相关性,同时提出了以前未报告的相关性.我们在Hippocampome.org上发布所有数据开源,以便进一步进行跨学科研究。
    The cellular and synaptic architecture of the rodent hippocampus has been described in thousands of peer-reviewed publications. However, no human- or machine-readable public catalog of synaptic electrophysiology data exists for this or any other neural system. Harnessing state-of-the-art information technology, we have developed a cloud-based toolset for identifying empirical evidence from the scientific literature pertaining to synaptic electrophysiology, for extracting the experimental data of interest, and for linking each entry to relevant text or figure excerpts. Mining more than 1,200 published journal articles, we have identified eight different signal modalities quantified by 90 different methods to measure synaptic amplitude, kinetics, and plasticity in hippocampal neurons. We have designed a data structure that both reflects the differences and maintains the existing relations among experimental modalities. Moreover, we mapped every annotated experiment to identified potential connections, that is, specific pairs of presynaptic and postsynaptic neuron types. To this aim, we leveraged Hippocampome.org, an open-access knowledge base of morphologically, electrophysiologically, and molecularly characterized neuron types in the rodent hippocampal formation. Specifically, we have implemented a computational pipeline to systematically translate neuron type properties into formal queries in order to find all compatible potential connections. With this system, we have collected nearly 40,000 synaptic data entities covering 88% of the 3,120 potential connections in Hippocampome.org. Correcting membrane potentials with respect to liquid junction potentials significantly reduced the difference between theoretical and experimental reversal potentials, thereby enabling the accurate conversion of all synaptic amplitudes to conductance. This data set allows for large-scale hypothesis testing of the general rules governing synaptic signals. To illustrate these applications, we confirmed several expected correlations between synaptic measurements and their covariates while suggesting previously unreported ones. We release all data open-source at Hippocampome.org in order to further research across disciplines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号