neurite

神经突
  • 文章类型: Journal Article
    目前,构建新型仿生还原氧化石墨烯(RGO)基纳米复合材料以诱导神经突发芽并修复受损的神经元代表了促进神经元发育或治疗脑缺氧或缺血的有前途的策略。这里,我们提出了一种通过将Pd共价结合到RGO表面以增强培养神经元的神经突发芽来构建钯还原氧化石墨烯(Pd-RGO)纳米复合材料的有效方法。如上所述,Pd-RGO纳米复合材料表现出更好的生物相容性而不影响细胞活力所需的物理化学特征。在Pd-RGO纳米复合材料上培养的原代神经元的神经元过程的数量和长度显着增加,包括轴突和树突,与对照相比。Westernblotting结果显示,Pd-RGO纳米复合材料提高了生长相关蛋白-43(GAP-43)的表达水平,以及β-III微管蛋白,Tau-1,微管相关蛋白-2(MAP2),参与调节神经突发芽和生长的四种蛋白质。重要的是,Pd-RGO在氧-葡萄糖剥夺/复氧(OGD/R)条件下显着促进神经突长度和复杂性,缺血性脑损伤的体外细胞模型,与神经元GAP-43表达密切相关。此外,采用大鼠大脑中动脉闭塞(MCAO)模型,我们发现Pd-RGO能有效减少梗死面积,大脑中神经元凋亡减少,改善了MCAO后大鼠的行为结果。一起,这些结果表明,Pd-RGO纳米复合材料作为一种新型优异的仿生神经接口材料具有巨大的潜力,阐明了其在脑损伤中的应用。
    Currently, the construction of novel biomimetic reduced graphene oxide (RGO)-based nanocomposites to induce neurite sprouting and repair the injured neurons represents a promising strategy in promoting neuronal development or treatment of cerebral anoxia or ischemia. Here, we present an effective method for constructing palladium-reduced graphene oxide (Pd-RGO) nanocomposites by covalently bonding Pd onto RGO surfaces to enhance neurite sprouting of cultured neurons. As described, the Pd-RGO nanocomposites exhibit the required physicochemical features for better biocompatibility without impacting cell viability. Primary neurons cultured on Pd-RGO nanocomposites had significantly increased number and length of neuronal processes, including both axons and dendrites, compared with the control. Western blotting showed that Pd-RGO nanocomposites improved the expression levels of growth associate protein-43 (GAP-43), as well as β-III tubulin, Tau-1, microtubule-associated protein-2 (MAP2), four proteins that are involved in regulating neurite sprouting and outgrowth. Importantly, Pd-RGO significantly promoted neurite length and complexity under oxygen-glucose deprivation/re-oxygenation (OGD/R) conditions, an in vitro cellular model of ischemic brain damage, that closely relates to neuronal GAP-43 expression. Furthermore, using the middle cerebral artery occlusion (MCAO) model in rats, we found Pd-RGO effectively reduced the infarct area, decreased neuronal apoptosis in the brain, and improved the rats\' behavioral outcomes after MCAO. Together, these results indicate the great potential of Pd-RGO nanocomposites as a novel excellent biomimetic material for neural interfacing that shed light on its applications in brain injuries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经突形成的分子机制包括途径之间的多种串扰,例如膜运输,细胞内信号,和肌动蛋白细胞骨架重排。为了研究参与这种复杂途径的蛋白质,我们介绍了基于质谱的蛋白质组学和数据分析的样品制备的详细工作流程.我们还包括对蛋白质进行无标记定量的步骤,这将有助于研究人员在全球范围内量化神经元形态发生关键调节因子的表达水平的变化。
    The molecular mechanisms underlying neurite formation include multiple crosstalk between pathways such as membrane trafficking, intracellular signaling, and actin cytoskeletal rearrangement. To study the proteins involved in such complex pathways, we present a detailed workflow of the sample preparation for mass spectrometry-based proteomics and data analysis. We have also included steps to perform label-free quantification of proteins that will help researchers quantify changes in the expression levels of key regulators of neuronal morphogenesis on a global scale.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这里,通过证明有丝分裂后肠神经元(EN)的神经支配潜力,我们确定可塑性存在于出生后肠神经系统中。使用BAF53b-Cre小鼠进行选择性神经元示踪,在多个模型系统中显示了成熟的产后EN的神经支配能力。分离的ENs在体外再生神经突,神经突复杂性和方向受与肠胶质细胞(EGC)接触的影响。来自移植EN的神经纤维仅与固有肌层内的EGC连接并沿着EGC传播。居民EGCs在Cre依赖性ENs消融后持续存在,并控制肠肌间神经丛的结构以恢复ENs的神经,如神经纤维投影追踪所示。体内移植和光遗传学实验突出了有丝分裂后神经元的快速神经支配潜力,导致2周内恢复肠道肌肉收缩活动。这些研究说明了有丝分裂后ENs的结构和功能神经支配能力以及EGC在引导和图案化其轨迹中的关键作用。
    Here, we establish that plasticity exists within the postnatal enteric nervous system by demonstrating the reinnervation potential of post-mitotic enteric neurons (ENs). Employing BAF53b-Cre mice for selective neuronal tracing, the reinnervation capabilities of mature postnatal ENs are shown across multiple model systems. Isolated ENs regenerate neurites in vitro, with neurite complexity and direction influenced by contact with enteric glial cells (EGCs). Nerve fibers from transplanted ENs exclusively interface and travel along EGCs within the muscularis propria. Resident EGCs persist after Cre-dependent ablation of ENs and govern the architecture of the myenteric plexus for reinnervating ENs, as shown by nerve fiber projection tracing. Transplantation and optogenetic experiments in vivo highlight the rapid reinnervation potential of post-mitotic neurons, leading to restored gut muscle contractile activity within 2 weeks. These studies illustrate the structural and functional reinnervation capacity of post-mitotic ENs and the critical role of EGCs in guiding and patterning their trajectories.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脊髓和延髓性肌萎缩症(SBMA)是由雄激素受体(AR)基因中编码多聚谷氨酰胺(polyQ)的CAG三核苷酸重复扩增引起的缓慢进展的神经肌肉疾病,导致AR聚集,下运动神经元死亡,肌肉萎缩.AR是一种配体激活的转录因子,可调节神经元结构并促进轴突再生;然而,AR转录功能是否有助于疾病的发病机制尚不完全清楚。使用SBMA的分化PC12细胞模型,我们确定了polyQ扩增的AR在调节神经突生长和维持方面的功能障碍。具体来说,我们发现在雄激素存在的情况下,polyQ扩展的AR抑制神经突生长,诱导神经突缩回,并抑制神经突再生。这种功能障碍与雄激素反应元件(ARE)的polyQ扩增的AR转录活性无关。我们进一步表明,polyQ扩增的AR核内包涵体的形成促进神经突回缩,这与神经元分化标记β-III-微管蛋白的表达降低相吻合。最后,我们发现,细胞死亡不是神经突退缩细胞的主要结果;相反,这些细胞变得衰老。我们的发现表明,与AR规范转录活性无关的机制在SBMA细胞模型中隐藏了神经突缺陷,并将衰老确定为与该病理学有关的途径。这些发现表明,在这里描述的SBMA病理中缺乏AR规范转录活性的作用,可能需要开发保留该活性的SBMA治疗剂。这种方法可能广泛适用于其他多谷氨酰胺疾病,例如亨廷顿氏病和脊髓小脑共济失调。
    Spinal and bulbar muscular atrophy (SBMA) is a slowly progressing neuromuscular disease caused by a polyglutamine (polyQ)-encoding CAG trinucleotide repeat expansion in the androgen receptor (AR) gene, leading to AR aggregation, lower motor neuron death, and muscle atrophy. AR is a ligand-activated transcription factor that regulates neuronal architecture and promotes axon regeneration; however, whether AR transcriptional functions contribute to disease pathogenesis is not fully understood. Using a differentiated PC12 cell model of SBMA, we identified dysfunction of polyQ-expanded AR in its regulation of neurite growth and maintenance. Specifically, we found that in the presence of androgens, polyQ-expanded AR inhibited neurite outgrowth, induced neurite retraction, and inhibited neurite regrowth. This dysfunction was independent of polyQ-expanded AR transcriptional activity at androgen response elements (ARE). We further showed that the formation of polyQ-expanded AR intranuclear inclusions promoted neurite retraction, which coincided with reduced expression of the neuronal differentiation marker β-III-Tubulin. Finally, we revealed that cell death is not the primary outcome for cells undergoing neurite retraction; rather, these cells become senescent. Our findings reveal that mechanisms independent of AR canonical transcriptional activity underly neurite defects in a cell model of SBMA and identify senescence as a pathway implicated in this pathology. These findings suggest that in the absence of a role for AR canonical transcriptional activity in the SBMA pathologies described here, the development of SBMA therapeutics that preserve this activity may be desirable. This approach may be broadly applicable to other polyglutamine diseases such as Huntington\'s disease and spinocerebellar ataxias.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元的复杂形态需要精确控制其微管细胞骨架。这是通过调节微管组装和稳定性的微管相关蛋白(MAP)来实现的。以及沿着它们运输分子和囊泡。虽然许多这些MAP在所有细胞中起作用,有些特别或主要参与调节神经元的微管。在这里,我们使用海葵Nematostellavectensis作为模型生物,为神经微管调节的早期进化提供新的见解。作为一个cnidarian,Nematostella属于所有双边体的外群,因此占据了重建神经系统发育进化的信息系统发育位置。我们确定了微管结合蛋白doublecortin样激酶(NvDclk1)的直系同源基因,该基因主要在神经元和CNidcells(刺痛细胞)中表达,刺胞动物中属于神经谱系的两类细胞。转基因NvDclk1报告品系揭示了从触手和身体柱中的CNid细胞中出现的神经突样过程的复杂网络。在NvDclk1启动子控制下表达NvDclk1的转基因表明NvDclk1定位于微管,因此可能充当微管结合蛋白。Further,我们使用CRISPR/Cas9产生了NvDclk1的突变体,并显示突变体无法产生成熟的CNidcytes。我们的结果支持以下假设:微管调节程序的制定发生在神经系统进化的早期。
    The complex morphology of neurons requires precise control of their microtubule cytoskeleton. This is achieved by microtubule-associated proteins (MAPs) that regulate the assembly and stability of microtubules, and transport of molecules and vesicles along them. While many of these MAPs function in all cells, some are specifically or predominantly involved in regulating microtubules in neurons. Here we use the sea anemone Nematostella vectensis as a model organism to provide new insights into the early evolution of neural microtubule regulation. As a cnidarian, Nematostella belongs to an outgroup to all bilaterians and thus occupies an informative phylogenetic position for reconstructing the evolution of nervous system development. We identified an ortholog of the microtubule-binding protein doublecortin-like kinase (NvDclk1) as a gene that is predominantly expressed in neurons and cnidocytes (stinging cells), two classes of cells belonging to the neural lineage in cnidarians. A transgenic NvDclk1 reporter line revealed an elaborate network of neurite-like processes emerging from cnidocytes in the tentacles and the body column. A transgene expressing NvDclk1 under the control of the NvDclk1 promoter suggests that NvDclk1 localizes to microtubules and therefore likely functions as a microtubule-binding protein. Further, we generated a mutant for NvDclk1 using CRISPR/Cas9 and show that the mutants fail to generate mature cnidocytes. Our results support the hypothesis that the elaboration of programs for microtubule regulation occurred early in the evolution of nervous systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑中淀粉样蛋白-β(Aβ)的积累是启动阿尔茨海默病(AD)发病的第一个病理机制。然而,Aβ在疾病进展中的确切作用尚不清楚.经过几十年的研究,长期炎症已成为AD的重要核心病理。以前,一项研究表明,在72小时的神经元-神经胶质共培养中,Aβ诱导的神经炎症的神经毒性作用。我们假设初始阶段Aβ可能引发小胶质细胞炎症,协同促进与AD进展相关的神经突病变的进展。在本研究中,我们的目的是确定奥氮平,一种具有抗炎特性的抗精神病药物,可以改善Aβ诱导的进行性神经突病变。我们的研究报告说,在体外有或没有炎性小胶质细胞的情况下,Aβ诱导神经突病变。更有趣的是,本研究表明,Aβ与小胶质细胞协同作用会加剧神经突病变。此外,时程研究表明,Aβ通过诱导促炎细胞因子的分泌促进小胶质细胞介导的神经突病变。此外,我们的研究表明,较低剂量的奥氮平可预防Aβ诱导的小胶质细胞介导的进行性神经突病变.奥氮平给药减弱了Aβ诱导的促炎细胞因子的增加,与小胶质细胞炎症的减少有关。最后,本研究报道奥氮平可挽救Aβ诱导的小胶质细胞衰老。因此,我们的研究提供了第一个证据,即1µM至5µM的奥氮平可以通过调节小胶质细胞炎症来有效预防Aβ诱导的小胶质细胞介导的进行性神经突病变.这些观察结果加强了靶向小胶质细胞重塑以减缓AD中的疾病进展的潜力。
    The accumulation of amyloid-β (Aβ) in the brain is the first pathological mechanism to initiate Alzheimer\'s disease (AD) pathogenesis. However, the precise role of Aβ in the disease progression remains unclear. Through decades of research, prolonged inflammation has emerged as an important core pathology in AD. Previously, a study has demonstrated the neurotoxic effect of Aβ-induced neuroinflammation in neuron-glia co-culture at 72 h. Here, we hypothesise that initial stage Aβ may trigger microglial inflammation, synergistically contributing to the progression of neurite lesions relevant to AD progression. In the present study, we aimed to determine whether olanzapine, an antipsychotic drug possessing anti-inflammatory properties, can ameliorate Aβ-induced progressive neurite lesions. Our study reports that Aβ induces neurite lesions with or without inflammatory microglial cells in vitro. More intriguingly, the present study revealed that Aβ exacerbates neurite lesions in synergy with microglia. Moreover, the time course study revealed that Aβ promotes microglia-mediated neurite lesions by eliciting the secretion of pro-inflammatory cytokines. Furthermore, our study shows that olanzapine at lower doses prevents Aβ-induced microglia-mediated progressive neurite lesions. The increase in pro-inflammatory cytokines induced by Aβ is attenuated by olanzapine administration, associated with a reduction in microglial inflammation. Finally, this study reports that microglial senescence induced by Aβ was rescued by olanzapine. Thus, our study provides the first evidence that 1 µM to 5 µM of olanzapine can effectively prevent Aβ-induced microglia-mediated progressive neurite lesions by modulating microglial inflammation. These observations reinforce the potential of targeting microglial remodelling to slow disease progression in AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脊髓损伤诱导显著的细胞应激反应。热休克蛋白90(HSP90)作为分子伴侣起着关键作用,对蛋白质折叠至关重要。稳定,和细胞信号通路。尽管它在压力适应中具有重要作用,HSP90在神经损伤后的具体表达模式和功能作用尚不清楚。本研究旨在阐明中枢神经系统(CNS)损伤后HSP90的表达动力学和功能意义。使用蛋白质印迹和免疫组织化学分析,我们观察到脊髓挫伤模型中脊髓组织和受损神经元内HSP90表达的上调。此外,发现HSP90可增强体外培养的原代皮层神经元的神经突生长。此外,在谷氨酸诱导的神经元损伤模型中,HSP90的表达上调,HSP90的过表达促进受损神经元的神经突再生长。总的来说,我们的研究结果强调了HSP90在神经损伤反应中的重要作用,并为中枢神经系统修复的潜在治疗策略提供了有价值的见解.
    Spinal cord injury induces significant cellular stress responses. The Heat Shock Protein 90 (HSP90) plays a pivotal role as a molecular chaperone and is crucial for protein folding, stabilization, and cellular signaling pathways. Despite its important function in stress adaptation, the specific expression patterns and functional roles of HSP90 after nerve injury remain unclear. This study aimed to elucidate the expression dynamics and functional implications of HSP90 following central nervous system (CNS) injury. Using western blotting and immunohistochemical analyses, we observed upregulation of HSP90 expression in spinal cord tissues and within injured neurons in a spinal cord contusion injury model. Additionally, HSP90 was found to enhance neurite outgrowth in primary cortical neurons cultured in vitro. Furthermore, in a glutamate-induced neuronal injury model, the expression of HSP90 was up-regulated, and overexpression of HSP90 promoted neurite re-growth in damaged neurons. Overall, our findings highlight the critical involvement of HSP90 in the neural response to injury and offer valuable insights into potential therapeutic strategies for CNS repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    先前的报道表明,锌缺乏会增加儿童患传染病和发育迟缓的风险。在实验研究中,据报道,胚胎期锌缺乏抑制胎儿生长,成年后神经分化紊乱和大脑功能增强。尽管有人认为发育过程中锌缺乏会对神经元的分化和成熟产生重大影响,低锌对发育过程中神经元分化影响的分子机制尚未详细阐明。进行这项研究以确定低锌状态对神经突生长和塌陷蛋白反应介质蛋白2(CRMP2)信号通路的影响。低锌抑制神经突生长,并在第1、2和3天引起人神经母细胞瘤细胞系(SH-SY5Y)细胞中相对于CRMP2的磷酸化CRMP2(pCRMP2)水平升高,相对于GSK3β的磷酸化糖原合酶激酶3β(pGSK3β)水平降低神经元分化诱导。通过用GSK3β抑制剂CHIR99021处理,恢复了由低锌抑制的神经突生长。这些结果表明,低锌通过GSK3β磷酸化CRMP2引起神经突生长抑制。总之,这项研究首次证明CRMP信号参与低锌抑制神经突生长.
    Previous reports indicated that zinc deficiency could increase the risk of infectious diseases and developmental retardation in children. In experimental study, it has been reported that zinc deficiency during the embryonic period inhibited fetal growth, and disturbed neural differentiation and higher brain function later in adulthood. Although it has been suggested that zinc deficiency during development can have significant effects on neuronal differentiation and maturation, the molecular mechanisms of the effects of low zinc on neuronal differentiation during development have not been elucidated in detail. This study was performed to determine the effects of low zinc status on neurite outgrowth and collapsin response mediator protein 2 (CRMP2) signal pathway. Low zinc suppressed neurite outgrowth, and caused increase levels of phosphorylated CRMP2 (pCRMP2) relative to CRMP2, and decrease levels of phosphorylated glycogen synthase kinase 3β (pGSK3β) relative to GSK3β in human neuroblastoma cell line (SH-SY5Y) cells on days 1, 2, and 3 of neuronal differentiation induction. Neurite outgrowth inhibited by low zinc was restored by treatment with the GSK3β inhibitor CHIR99021. These results suggested that low zinc causes neurite outgrowth inhibition via phosphorylation of CRMP2 by GSK3β. In conclusion, this study is the first to demonstrate that CRMP signaling is involved in the suppression of neurite outgrowth by low zinc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们检查了偏头痛患者的神经突取向色散和密度成像。我们发现,药物过度使用头痛的患者比未使用头痛的患者表现出更低的取向分散性。此外,call体体内的方向离散度与偏头痛发作频率呈统计学负相关。这些发现表明,慢性偏头痛患者的神经突分散受到损害。我们的研究结果表明偏头痛中神经突损伤的取向偏好。
    We examined neurite orientation dispersion and density imaging in patients with migraine. We found that patients with medication overuse headache exhibited lower orientation dispersion than those without. Moreover, orientation dispersion in the body of the corpus callosum was statistically negatively correlated with migraine attack frequencies. These findings indicate that neurite dispersion is damaged in patients with chronic migraine. Our study results indicate the orientation preference of neurite damage in migraine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中风后的脑功能损害是常见的;然而,卒中后恢复的分子机制尚不清楚.众所周知,年龄是卒中后不良预后的最重要的独立预测因素,因为老年患者在卒中后表现出较差的功能预后。越来越多的证据表明轴突再生和血管生成,大脑可塑性的主要形式负责中风后的恢复,随着年龄的增长而减少。先前的研究表明,Ras相关的C3肉毒杆菌毒素底物(Rac)1可增强中风恢复,因为Rac1的激活可改善年轻小鼠中风模型中的行为恢复。这里,我们调查了Rac1信号传导在老年人长期功能恢复和大脑可塑性中的作用(男性,18~22月龄C57BL/6J)缺血性卒中后脑。我们发现随着老鼠年龄的增长,Rac1在脑中的表达下降。在缺血性中风后第1天注射编码Rac1的慢病毒,Rac1的延迟过表达,在第14-28天促进认知(使用新型物体识别测试评估)和感觉运动(使用粘合剂去除测试评估)恢复。这伴随着通过免疫染色评估的梗死周围区域中神经突和增殖内皮细胞的增加。在相反的方法中,通过腹膜内注射Rac1抑制剂NSC23766连续14天对Rac1的药理学抑制缺血性中风后,随着神经突和增殖性内皮细胞的减少,结果恶化。此外,Rac1抑制降低了p21激活的激酶1的激活,脑源性神经营养因子的蛋白水平,并在卒中后第28天增加缺血性脑中胶质纤维酸性蛋白的蛋白水平。我们的工作提供了对老年大脑脑缺血后可塑性降低背后的机制的见解,并确定Rac1作为改善老年人中风后功能恢复的潜在治疗靶点。
    Brain functional impairment after stroke is common; however, the molecular mechanisms of post-stroke recovery remain unclear. It is well-recognized that age is the most important independent predictor of poor outcomes after stroke as older patients show poorer functional outcomes following stroke. Mounting evidence suggests that axonal regeneration and angiogenesis, the major forms of brain plasticity responsible for post-stroke recovery, diminished with advanced age. Previous studies suggest that Ras-related C3 botulinum toxin substrate (Rac) 1 enhances stroke recovery as activation of Rac1 improved behavior recovery in a young mice stroke model. Here, we investigated the role of Rac1 signaling in long-term functional recovery and brain plasticity in an aged (male, 18 to 22 months old C57BL/6J) brain after ischemic stroke. We found that as mice aged, Rac1 expression declined in the brain. Delayed overexpression of Rac1, using lentivirus encoding Rac1 injected day 1 after ischemic stroke, promoted cognitive (assessed using novel object recognition test) and sensorimotor (assessed using adhesive removal tests) recovery on days 14-28. This was accompanied by the increase of neurite and proliferative endothelial cells in the peri-infarct zone assessed by immunostaining. In a reverse approach, pharmacological inhibition of Rac1 by intraperitoneal injection of Rac1 inhibitor NSC23766 for 14 successive days after ischemic stroke worsened the outcome with the reduction of neurite and proliferative endothelial cells. Furthermore, Rac1 inhibition reduced the activation of p21-activated kinase 1, the protein level of brain-derived neurotrophic factor, and increased the protein level of glial fibrillary acidic protein in the ischemic brain on day 28 after stroke. Our work provided insight into the mechanisms behind the diminished plasticity after cerebral ischemia in aged brains and identified Rac1 as a potential therapeutic target for improving functional recovery in the older adults after stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号