nanorods

纳米棒
  • 文章类型: Journal Article
    采用共沉淀法制备了不同浓度Cu掺杂的CaB2O4纳米棒。记录的CaB2O4:Cu样品在不同浓度的Cu下用6Gy的X射线辐照下的热释光(TL)和光激发发光(OSL)显示0.05at。wt%的Cu浓度具有更高的灵敏度。使用“tgcd”和常规拟合方法评估了辉光曲线的TL和OSL动力学参数。CaB2O4:Cu的TL辉光曲线具有三个单独的辉光峰,最大峰温度分别在404.50、453.04和484.02K。CaB2O4:Cu纳米颗粒的OSL辉光曲线遵循非一级动力学,可以用两个一级衰减曲线的总和拟合。
    CaB2O4 nanorods doped with different concentrations of Cu were prepared by using co-precipitation method. The recorded Thermoluminescence (TL) and Optically stimulated luminescence (OSL) of CaB2O4:Cu samples for different concentrations of Cu irradiated with 6 Gy of X-Ray shows that 0.05 at.wt% of Cu concentrations have higher sensitivity. The TL and OSL kinetic parameters of glow curves were evaluated using \"tgcd\" and conventional fitting methods. The TL glow curve of the CaB2O4:Cu have three individual glow peaks with maximum peak temperatures at 404.50, 453.04 and 484.02 K respectively. The OSL glow curves of the CaB2O4:Cu nanoparticles follow non-first order kinetics which can be fitted with the sum of two first order decay curves.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    热水处理(HWT)是一种通过将金属基材浸入热水中来合成金属氧化物纳米结构(MONSTRs)的通用技术,通常在玻璃烧杯中。在HWT期间衬底与热源的接近度可影响衬底的温度并随后影响MONSTR生长。在我们的研究中,锌(Zn)基材在玻璃烧杯的底部与热板接触并与底部相距四个不同的垂直距离进行HWT。虽然去离子(DI)水的设定温度为75.0°C,基板位置表现出变化,特别是底部达到95.0°C。扫描电子显微镜(SEM),能量色散X射线光谱(EDS),X射线衍射(XRD)和拉曼光谱显示化学计量和结晶氧化锌(ZnO)纳米棒。ZnO棒在底座上,暴露在更高的温度下,在长度和直径上表现出更大的增长,和更高的结晶度。尽管温度相同,但距离基底垂直距离增加的纳米棒的长度呈对数减少,而它们的直径保持不变。我们将这些发现归因于至关重要的HWT生长机制,例如表面扩散和“堵塞”,受烧杯内温度和水流的影响。我们的结果为优化合成参数以通过HWT有效控制MONSTR生长提供了见解。
    Hot water treatment (HWT) is a versatile technique for synthesizing metal oxide nanostructures (MONSTRs) by immersing metal substrates in hot water, typically in glass beakers. The proximity of substrates to the heat source during HWT can influence the temperature of the substrate and subsequently impact MONSTR growth. In our study, zinc (Zn) substrates underwent HWT at the base of a glass beaker in contact with a hot plate and at four different vertical distances from the base. While the set temperature of deionized (DI) water was 75.0 °C, the substrate locations exhibited variations, notably with the base reaching 95.0 °C. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Raman spectroscopy showed stoichiometric and crystalline zinc oxide (ZnO) nanorods. ZnO rods on the base, exposed to higher temperatures, displayed greater growth in length and diameter, and higher crystallinity. Nanorods with increasing vertical distances from the base exhibited a logarithmic decrease in length despite identical temperatures, whereas their diameters remained constant. We attribute these findings to crucial HWT growth mechanisms like surface diffusion and \"plugging\", influenced by temperature and water flow within the beaker. Our results provide insights for optimizing synthesis parameters to effectively control MONSTR growth through HWT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    解决钻井液对绿色添加剂日益增长的需求,对于油气行业的可持续发展至关重要。在钻井期间进入多孔和可渗透地层的流体损失提出了重大挑战。这项研究引入了一项创新的,环境可持续钻井液被称为纳米可生物降解钻井液(NBDF)。NBDF配方包含绿色合成的锌纳米棒(ZNRs)和gundelia种子壳粉末,使用生态友好的方法从Cydoniaoblonga植物提取物中提取ZNRs。该研究开发了多种用于实验的钻井液变体:参考钻井液(BM);可生物降解的钻井液(BDF),粒径为75、150、300和600µm,浓度范围为0.5至1wt%(GSM);ZNR浓度为0.1wt%(ZNR)的钻井纳米流体(DNF);NBDF结合了纳米废物和gundelia废物(GS-ZNR)。在各种温度和压力条件下进行了实验测试,包括低温低压(LTLP)和高温高压(HTHP)。进行流变和过滤测量以评估纳米生物可降解添加剂对流动行为和流体损失的影响。结果表明,在75°C和200psi下,与BM相比,掺入1wt%的粒度为75µm的gundelia种子壳粉末可使流体损失减少19.61%。当加入1重量%的锌ZNR时,相同GSM的性能在相同条件下提高31%。值得注意的是,GS-ZNR配方在减少进入地层的流体损失方面表现出最有效的性能,减少泥饼厚度,并增强非牛顿参考钻井液的流动行为。这项研究强调了粒度与生物可降解添加剂有效性的相关性,并强调了NBDF在解决石油和天然气钻探行业环境问题方面的潜力。
    Addressing the increasing demand for green additives in drilling fluids is essential for the sustainable development of the oil and gas industry. Fluid loss into porous and permeable formations during drilling presents significant challenges. This study introduced an innovative, environmentally sustainable drilling fluid known as nano-biodegradable drilling fluid (NBDF). The NBDF formulation incorporates greenly synthesized zinc nanorods (ZNRs) and gundelia seed shell powder, with ZNRs derived from Cydonia oblonga plant extracts using an eco-friendly method. The research developed multiple drilling fluid variants for experimentation: a reference drilling fluid (BM); biodegradable drilling fluid (BDF) with particle sizes of 75, 150, 300, and 600 µm at concentrations ranging from 0.5 to 1 wt% (GSMs); a drilling nanofluid (DNF) with ZNRs at a 0.1 wt% concentration (ZNR); and NBDF combining both nano and gundelia waste (GS-ZNR). Experimental tests were conducted under various temperature and pressure conditions, including low temperature and low pressure (LTLP) and high temperature and high pressure (HTHP). Rheological and filtration measurements were performed to assess the impact of the nano-biodegradable additives on flow behavior and fluid loss. Results indicated that incorporating 1 wt% of gundelia seed shell powder with a particle size of 75 µm led to a 19.61% reduction in fluid loss compared to BM at 75 °C and 200 psi. The performance of the same GSM improved by 31% under identical conditions when 1 wt% of zinc ZNRs was added. Notably, the GS-ZNR formulation demonstrated the most effective performance in reducing fluid loss into the formation, decreasing mud cake thickness, and enhancing the flow behavior of the non-Newtonian reference drilling fluid. This study highlights the relevance of particle size in the effectiveness of biodegradable additives and underscores the potential of NBDF to address environmental concerns in the oil and gas drilling industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于半导体的表面增强拉曼散射(SERS)的最新进展已经取得了许多进展,主要集中在化学机制上。然而,电磁(电磁机制)在推进半导体SERS衬底中的作用仍未得到充分探索。在这项研究中,我们开发了一种基于密集排列的α型MoO3(α-MoO3)半导体纳米棒(NRs)的SERS衬底,该衬底具有长方体带状,宽度为数百纳米。这些结构属性通过在NRs之间的窄间隙中产生的多重光散射强烈影响可见范围内的光传输。有助于提高SERS性能。设计NRs的纳米结构和化学成分实现了高SERS灵敏度,增强因子为2×108,对罗丹明6G(R6G)分子的低检测限为5×10-9M,这是通过具有强光散射的化学计量NR样品实现的。此外,据观察,散射长度变得明显更短与激发波长在可见光范围,这表明与Anderson定位相关的介观干涉强烈地改变了光传输。此外,发现高电场位于NR表面上,根据激发波长,类似于SERS响应。这些光学现象表明,电磁激发过程在基于α-MoO3NRs的无等离子体激元SERS平台中起着重要作用。我们假设我们的研究为设计有效的基于EM的SERS有源半导体衬底提供了重要的指导。
    Recent developments in semiconductor-based surface-enhanced Raman scattering (SERS) have achieved numerous advancements, primarily centered on the chemical mechanism. However, the role of the electromagnetic (electromagnetic mechanism) contribution in advancing semiconductor SERS substrates is still underexplored. In this study, we developed a SERS substrate based on densely aligned α-type MoO3 (α-MoO3) semiconductor nanorods (NRs) with rectangular parallelepiped ribbon shapes with width measuring several hundred nanometers. These structural attributes strongly affect light transport in the visible range by multiple light scattering generated in narrow gaps between NRs, contributing to the improvement of SERS performance. Engineering the nanostructure and chemical composition of NRs realized high SERS sensitivity with an enhancement factor of 2 × 108 and a low detection limit of 5 × 10-9 M for rhodamine 6G (R6G) molecules, which was achieved by the stoichiometric NR sample with strong light scattering. Furthermore, it was observed that the scattering length becomes significantly shorter compared with the excitation wavelength in the visible regime, which indicates that light transport is strongly modified by mesoscopic interference related to Anderson localization. Additionally, high electric fields were found to be localized on the NR surfaces, depending on the excitation wavelength, similar to the SERS response. These optical phenomena indicate that electromagnetic excitation processes play an important role in plasmon-free SERS platforms based on α-MoO3 NRs. We postulate that our study provides important guidance for designing effective EM-based SERS-active semiconductor substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    采用微波辅助合成法制备氢氧化铕(Eu(OH)3)和不同百分比的1、5和10%镍掺杂的Eu(OH)3(Ni-Eu(OH)3)纳米棒(NRs)。X射线衍射研究表明,对于Eu(OH)3和Ni-Eu(OH)3NRs,六方晶相的平均晶粒尺寸在21-35nm的范围内。FT-IR和拉曼研究也证实了Eu(OH)3和Ni-Eu(OH)3的合成。合成的材料呈棒状形态,平均长度和直径在27-50nm和8-13nm之间,分别。Ni-Eu(OH)3NRs的带隙能量降低(4.06-3.50eV),说明Ni2+离子的掺杂对Eu(OH)3的带隙能量有一定的影响。PL研究显示了掺杂Ni的PL猝灭。研究了合成材料在紫外光照射下对4-硝基苯酚(4-NP)的光催化降解性能,其中10%Ni-Eu(OH)3NRs反应最好。还进行了动力学研究,其显示了伪一级动力学。基于此,Ni-Eu(OH)3NRs已显示出作为用于光催化的UV光活性材料的潜力。
    Microwave-assisted synthesis method was used to prepare europium hydroxide (Eu(OH)3) and different percentages of 1, 5, and 10 % nickel-doped Eu(OH)3 (Ni-Eu(OH)3) nanorods (NRs). X-ray diffraction study showed a hexagonal phase with an average crystallite size in the range of 21 - 35 nm for Eu(OH)3 and Ni-Eu(OH)3 NRs. FT-IR and Raman studies also confirmed the synthesis of Eu(OH)3 and Ni-Eu(OH)3. The synthesized materials showed rod-like morphology with an average length and diameter between 27 - 50 nm and 8 - 13 nm, respectively. The band gap energies of Ni-Eu(OH)3 NRs were reduced (4.06 - 3.50 eV), which indicates that the doping of Ni2+ ions has influenced the band gap energy of Eu(OH)3. The PL study exhibited PL quenching with Ni doping. The photocatalytic degradation of 4-nitrophenol (4-NP) by the synthesized materials under UV light irradiation was investigated, in which 10 % Ni-Eu(OH)3 NRs showed the best response. A kinetic study was also conducted which shows pseudo-first-order kinetics. Based on this, Ni-Eu(OH)3 NRs have shown a potential to be a UV-light active material for photocatalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究考察了生长温度和掺杂剂浓度对Gd和Ni掺杂的氧化锌纳米棒(ZnONRs)性能的影响。使用溶胶-凝胶和浸涂方法将ZnO晶种层沉积在玻璃基板上。Gd和Ni掺杂的ZnONRs在种子层上在不同温度(例如75、90和105°C)水热生长,恒定生长时间为5小时。光学,表面形态视图,通过X射线衍射(XRD)对NRs的电性能进行了广泛的研究,扫描电子显微镜(SEM),紫外可见光谱,和四种探针实验方法。XRD分析证实了ZnO主基体中的Gd3和Ni2离子成功地取代了Zn2离子。具有不同电负性的六边形结构的重新排序,离子半径尺寸,Gd和Ni掺杂剂的价电子态严重影响了NRs的基本特征。SEM图像表明,与在其他生长温度下生长的ZnONRs相比,在90°C下生长的ZnONRs具有更有利的表面形态和明确的六边形形状。较高的掺杂剂浓度导致NR直径增加,但密度降低取决于NR之间空间的增加。此外,发现光学透射率通常随着掺杂剂浓度的增加而增强。获得的结果强调了生长温度之间的相互作用,在调整结构时的掺杂剂类型和浓度,形态学,Gd和Ni掺杂的ZnONRs的光学性质,为开发各种应用的优化纳米材料铺平了道路。研究重点:XRD分析证实了ZnO主基体中Zn2+离子被Gd3+和Ni2+成功取代。SEM图像表明,与在其他生长温度下生长的ZnONRs相比,在90°C下生长的ZnONRs具有更有利的表面形态和明确的六边形形状。发现光学透射率通常随着掺杂剂浓度的增加而增强。获得的结果强调了生长温度之间的相互作用,在调整结构时的掺杂剂类型和浓度,形态学,Gd和Ni掺杂的ZnONRs的光学性质,为开发各种应用的优化纳米材料铺平了道路。
    This study examined the influence of growth temperature and dopant concentration on the properties of Gd- and Ni-doped zinc oxide nanorods (ZnO NRs). ZnO seed layers were deposited on glass substrates using a sol-gel and dip-coating approach. Gd- and Ni-doped ZnO NRs were hydrothermally grown on the seed layers at different temperatures such as 75, 90, and 105°C for a constant growth time of 5 h. The crystal structure, optical, surface morphology views, and electrical properties of the NRs were extensively investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible spectroscopy, and four probe experimental methods. The XRD analysis confirmed the successful substitution of Zn2+ ions by Gd3+ and Ni2+ within the ZnO main matrices. The reordering of hexagonal structures with varied electronegativity, ionic radius dimensions, and valence electron states of Gd and Ni dopants affected seriously the fundamental characteristic features of NRs. The SEM images showed that the ZnO NRs grown at 90°C possessed a more favorable surface morphology and well-defined hexagonal shape compared with those grown at other growth temperatures. Higher dopant concentration led to an increase in NR diameter but a decrease in density depending on the increase in the space between the NRs. Additionally, the optical transmittance was found to generally enhance with increasing dopant concentration. The results obtained highlighted the interplay between growth temperature, dopant type and concentration in tailoring the structural, morphological, and optical properties of Gd- and Ni-doped ZnO NRs, paving the way for the development of optimized nanomaterials for various applications. RESEARCH HIGHLIGHTS: The XRD analysis confirmed the successful substitution of Zn2+ ions by Gd3+ and Ni2+ within the ZnO main matrices. The SEM images showed that the ZnO NRs grown at 90°C possessed a more favorable surface morphology and well-defined hexagonal shape compared with those grown at other growth temperatures. The optical transmittance was found to generally enhance with increasing dopant concentration. The results obtained highlighted the interplay between growth temperature, dopant type and concentration in tailoring the structural, morphological, and optical properties of Gd- and Ni-doped ZnO NRs, paving the way for the development of optimized nanomaterials for various applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从生物医学到光电和热电应用的零价碲纳米颗粒(Te0NP)的实际应用领域的扩大决定了开发简单且负担得起的制备方法的现状。在现有的各种合成Te0NP的方法中,应特别注意化学方法,尤其是“绿色”方法,这是基于使用碲的前体在其粉末散装形式和天然含半乳糖的多糖-阿拉伯半乳聚糖(Ar-Gal),半乳甘露聚糖-(GM-dP)和κ-角叉菜胶(κ-CG)作为配体稳定Te0NP的表面。使用碱性还原体系“N2H4H2O-NaOH”初步活化大量Te和Ar-Gal,GM-dP和κ-CG使我们能够在水性介质中获得许多由多糖大分子稳定的Te0NP组成的稳定纳米复合材料。通过改变前驱体的比例,获得了不同形貌的纳米颗粒,从多糖/Te比为100:1的球体到10:1的类稻。类型(分支,梳理,或线性硫酸化)的多糖及其分子量值决定了纳米颗粒的尺寸。因此,在此基础上,选择用于本研究的含半乳糖多糖可能是生产具有不同形态的水溶性Te0NP的有前途的可再生材料。
    The widening of possible areas of practical uses for zero-valent tellurium nanoparticles (Te0NPs) from biomedicine to optoelectronic and thermoelectric applications determines the actuality of the development of simple and affordable methods for their preparation. Among the existing variety of approaches to the synthesis of Te0NPs, special attention should be paid to chemical methods, and especially to \"green\" approaches, which are based on the use of precursors of tellurium in their powder bulk form and natural galactose-containing polysaccharides-arabinogalactan (Ar-Gal), galactomannan-(GM-dP) and κ-carrageenan (κ-CG) acting as ligands stabilizing the surface of the Te0NPs. The use of basic-reduction system \"N2H4 H2O-NaOH\" for preliminary activation of bulk-Te and Ar-Gal, GM-dP and κ-CG allowed us to obtain in aqueous medium a number of stable nanocomposites consisting of Te0NPs stabilized by the polysaccharides\' macromolecules. By varying the precursor ratio, different morphologies of nanoparticles were obtained, ranging from spheres at a polysaccharide/Te ratio of 100:1 to rice-like at a 10:1 ratio. The type (branched, combed, or linear sulfated) of polysaccharide and its molecular weight value determined the size of the nanoparticles. Thus, the galactose-containing polysaccharides that were selected for this study may be promising renewable materials for the production of water-soluble Te0NPs with different morphology on this basis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    植物的细胞内发育过程,特别是关于木质素聚合物的形成和生物质生产是由microRNAs(miRNA)调节。包括miR397b在内的miRNA对于开发高效且具有成本效益的生物燃料非常重要。然而,传统的miRNA表达监测方法,像PCR,是耗时的,需要样品提取,缺乏空间和时间分辨率,尤其是在现实世界中。我们提出了一种使用等离子体纳米传感来监测活植物细胞内miRNA活性而无需样品提取的新方法。使用表面增强拉曼散射(SERS)检测的等离子体生物传感器可提供高灵敏度和精确的分子信息。我们在具有高纵横比的独特银涂层金纳米棒(AuNR@Ag)上使用了反向分子前哨(iMS)生物传感器,以穿透植物细胞壁,以检测完整的活植物细胞中的miR397b。MiR397b过表达已显示出降低木质素含量的前景。因此,监测miR397b对于具有成本效益的生物燃料生产至关重要。这项研究首次证明了纳米棒iMS生物传感器的浸润和植物细胞内非天然miRNA397b的检测。该研究通过TEM和基于XRF的元素作图成功地证明了纳米棒iMS生物传感器的定位,用于本氏烟草植物细胞内的miRNA检测。该研究集成了位移激发拉曼差分光谱(SERDS),以减少背景干扰并增强目标信号提取。体内SERDS测试证实了用iMS纳米棒和miR397b靶标浸润后拟南芥叶片中miR397b的动态检测。这项概念验证研究是迈向空间分辨的重要垫脚石,细胞内miRNA作图以监测生物标志物和生物途径,以开发有效的可再生生物燃料来源。
    The intracellular developmental processes in plants, particularly concerning lignin polymer formation and biomass production are regulated by microRNAs (miRNAs). MiRNAs including miR397b are important for developing efficient and cost-effective biofuels. However, traditional methods of monitoring miRNA expression, like PCR, are time-consuming, require sample extraction, and lack spatial and temporal resolution, especially in real-world conditions. We present a novel approach using plasmonics nanosensing to monitor miRNA activity within living plant cells without sample extraction. Plasmonic biosensors using surface-enhanced Raman scattering (SERS) detection offer high sensitivity and precise molecular information. We used the Inverse Molecular Sentinel (iMS) biosensor on unique silver-coated gold nanorods (AuNR@Ag) with a high-aspect ratio to penetrate plant cell walls for detecting miR397b within intact living plant cells. MiR397b overexpression has shown promise in reducing lignin content. Thus, monitoring miR397b is essential for cost-effective biofuel generation. This study demonstrates the infiltration of nanorod iMS biosensors and detection of non-native miRNA 397b within plant cells for the first time. The investigation successfully demonstrates the localization of nanorod iMS biosensors through TEM and XRF-based elemental mapping for miRNA detection within plant cells of Nicotiana benthamiana. The study integrates shifted-excitation Raman difference spectroscopy (SERDS) to decrease background interference and enhance target signal extraction. In vivo SERDS testing confirms the dynamic detection of miR397b in Arabidopsis thaliana leaves after infiltration with iMS nanorods and miR397b target. This proof-of-concept study is an important stepping stone towards spatially resolved, intracellular miRNA mapping to monitor biomarkers and biological pathways for developing efficient renewable biofuel sources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光子晶体,以它们的周期性结构为特征,已经被广泛研究了它们操纵光线的能力。通常,二维光子晶体的发展需要复杂的设备或球形纳米粒子的精确取向。然而,液晶(LC)材料提供了一个有前途的替代方案,促进周期性结构的形成,而不需要复杂的操作。尽管有这样的优势,使用LC材料的2D光子周期结构的发展仅限于一些胶体纳米盘液晶。在这里,我们报道了由生物矿物基纳米棒和水组成的二维光子胶体液晶。由LC胶体纳米棒自组装而成的具有2D结构的软光子材料是独特的,是一种不同于传统固体2D光子材料的新型光子材料。这些胶体表现出明亮的结构颜色,具有高反射率(>50%)和显著的角度依赖性。通过控制LC胶体纳米棒的浓度和尺寸来调节结构颜色。此外,我们开发了具有二维光子结构的机械变色水凝胶薄膜。水凝胶表现出具有角度依赖性的可逆机械变色特性,可用于高级刺激传感器。本文受版权保护。保留所有权利。
    Photonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid-crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation. Despite this advantage, the development of 2D photonic periodic structures using LC materials is limited to a few colloidal nanodisk liquid crystals. Herein, 2D photonic colloidal liquid crystals composed of biomineral-based nanorods and water is reported. The soft photonic materials with 2D structure by self-assembled LC colloidal nanorods are unique and a new class of photonic materials different from conventional solid 2D photonic materials. These colloids exhibit bright structural colors with high reflectance (>50%) and significant angular dependency. The structural colors are adjusted by controlling the concentration and size of the LC colloidal nanorods. Furthermore, mechanochromic hydrogel thin films with 2D photonic structure are developed. The hydrogels exhibit reversible mechanochromic properties with angular dependency, which can be used for an advanced stimuli responsible sensor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    半导体纳米棒(NRs)具有独特的线性偏振发光特性,可以突破基于球形量子点的发光二极管(LED)的外部量子效率极限,在光电器件中具有巨大的应用潜力。发展红色取得重大进展,绿色,和发射蓝光的NR。然而,在深红色区域发射的NRs的合成,可用于精确的红色LED显示屏和促进植物生长,目前探索较少。这里,我们报道了通过种子生长法合成深红色CdSeTe/CdZnS/ZnS点在棒核/壳NRs的方法,其中在CdSe核中掺杂Te可以将NR发射扩展到深红色区域。棒状CdZnS壳在CdSeTe种子上生长。通过生长ZnS钝化壳,CdSeTe/CdZnS/ZnSNRs在670nm处出现光致发光发射峰,半峰全宽为61nm,光致发光量子产率为45%。深红色NRs的发展可以大大扩展各向异性纳米晶体的应用。
    Semiconductor nanorods (NRs) have great potential in optoelectronic devices for their unique linearly polarized luminescence which can break the external quantum efficiency limit of light-emitting diodes (LEDs) based on spherical quantum dots. Significant progress has been made for developing red, green, and blue light-emitting NRs. However, the synthesis of NRs emitting in the deep red region, which can be used for accurate red LED displays and promoting plant growth, is currently less explored. Here, we report the synthesis of deep red CdSeTe/CdZnS/ZnS dot-in-rod core/shell NRs via a seeded growth method, where the doping of Te in the CdSe core can extend the NR emission to the deep red region. The rod-shaped CdZnS shell is grown over CdSeTe seeds. By growing a ZnS passivation shell, the CdSeTe/CdZnS/ZnS NRs exhibit a photoluminescence emission peak at 670 nm, a full width at a half maximum of 61 nm and a photoluminescence quantum yield of 45%. The development of deep red NRs can greatly extend the applications of anisotropic nanocrystals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号