nanofluidic

纳米流体
  • 文章类型: Journal Article
    生物体使用离子和小分子作为信息载体,以超低功耗与外部环境进行通信。受到生物系统的启发,近年来出现了基于离子的人工设备,以尝试实现有效的信息处理范例。纳米流体离子忆阻器,基于受限流体系统的存储电阻器,其内部离子电导状态取决于历史电压,已经引起了广泛的关注,并被用作计算的神经形态设备。尽管他们的曝光率很高,纳米流体离子忆阻器仍处于初始阶段。因此,开发和合理设计离子忆阻器的系统指导是必要的。这篇综述系统地总结了历史,机制,纳米流体离子忆阻器的潜在应用。还讨论了该领域的基本挑战以及纳米流体离子忆阻器的未来潜在应用前景。
    Living organisms use ions and small molecules as information carriers to communicate with the external environment at ultralow power consumption. Inspired by biological systems, artificial ion-based devices have emerged in recent years to try to realize efficient information-processing paradigms. Nanofluidic ionic memristors, memory resistors based on confined fluidic systems whose internal ionic conductance states depend on the historical voltage, have attracted broad attention and are used as neuromorphic devices for computing. Despite their high exposure, nanofluidic ionic memristors are still in the initial stage. Therefore, systematic guidance for developing and reasonably designing ionic memristors is necessary. This review systematically summarizes the history, mechanisms, and potential applications of nanofluidic ionic memristors. The essential challenges in the field and the outlook for the future potential applications of nanofluidic ionic memristors are also discussed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前,纳米流体突触只能执行基本的神经形态脉冲模式。需要解决的一个直接问题是实现纳米流体尖峰设备,以进一步增强其类似大脑的计算能力。这里,我们报告了使用聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐膜来实现仿生离子电流诱导的加标。除了模拟各种电脉冲模式,我们的突触可以产生跨膜离子电流诱导的尖峰,这与具有相似阶段和兴奋性的生物动作电位高度相似。此外,尖峰特性可以通过离子和神经化学物质来调节。我们希望这项工作可以为解决方案中的仿生尖峰计算做出贡献。
    Currently, the nanofluidic synapse can only perform basic neuromorphic pulse patterns. One immediate problem that needs to be addressed to further its capability of brain-like computing is the realization of a nanofluidic spiking device. Here, we report the use of a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate membrane to achieve bionic ionic current-induced spiking. In addition to the simulation of various electrical pulse patterns, our synapse could produce transmembrane ionic current-induced spiking, which is highly analogous to biological action potentials with similar phases and excitability. Moreover, the spiking properties could be modulated by ions and neurochemicals. We expect that this work could contribute to biomimetic spiking computing in solution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元中普遍存在的电压门控离子通道通过响应跨膜电位在产生动作电位和信息传递中起重要作用。用离子作为电荷载体制造生物启发的离子晶体管对于实现神经启发的设备和大脑喜欢的计算至关重要。这里,我们报道了基于具有亚1nm层间通道的MXene膜的二维纳米流体离子晶体管。通过在MXene纳米流体上施加门控电压,将产生跨膜电位以激活离子晶体管,这类似于神经元细胞的跨膜电位,可以通过改变膜参数进行有效调节,例如,厚度,composition,和层间间距。对于对称MXene纳米流体,通过形成离子耗尽或积累区,可以实现~2000的高开/关比,取决于门控潜力的迹象。不对称PET/MXene复合纳米流体将离子晶体管从双极转变为单极,导致更敏感的栅极电压特性,具有560mV/decade的低亚阈值摆幅。此外,离子逻辑门电路,包括\"NOT\",\"NAND\",和“NOR”门,成功实现了神经形态信号处理,这提供了一条通往高度平行的有希望的途径,低能耗,和基于离子的类脑计算。
    Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the \"NOT\", \"NAND\", and \"NOR\" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA双链断裂(DSB)可能对细胞有害,需要有效修复。DSB修复的第一步是使游离端紧密靠近,以便通过非同源末端连接(NHEJ)进行连接。虽然更精确,但较少可用,通过同源重组(HR)修复需要紧密靠近姐妹染色单体。人MRE11-RAD50-NBS1(MRN)复合物,酵母中的Mre11-Rad50-Xrs2(MRX),参与两种修复途径。在这里,我们使用纳米流体通道来研究,在单个DNA分子水平上,如何MRN,MRX及其成分与长DNA相互作用并促进DNA桥接。纳米流体是研究DNA末端反应的合适方法,因为不需要锚定DNA末端。我们证明NBS1和Xrs2起着重要的作用,但不同的是,MRN和MRX在DNA连接中的作用。NBS1促进与修复模板的束缚一致的MRN的DNA桥接。MRX显示“突触样”DNA末端桥接,由Xrs2亚基刺激。我们的结果突出了MRN和MRX桥接DNA的不同方式,结果与他们在人力资源和NHEJ中的关键作用一致,分别,有助于理解NBS1和Xrs2在DSB修复中的作用。
    DNA double strand breaks (DSBs) can be detrimental to the cell and need to be efficiently repaired. A first step in DSB repair is to bring the free ends in close proximity to enable ligation by non-homologous end-joining (NHEJ), while the more precise, but less available, repair by homologous recombination (HR) requires close proximity of a sister chromatid. The human MRE11-RAD50-NBS1 (MRN) complex, Mre11-Rad50-Xrs2 (MRX) in yeast, is involved in both repair pathways. Here we use nanofluidic channels to study, on the single DNA molecule level, how MRN, MRX and their constituents interact with long DNA and promote DNA bridging. Nanofluidics is a suitable method to study reactions on DNA ends since no anchoring of the DNA end(s) is required. We demonstrate that NBS1 and Xrs2 play important, but differing, roles in the DNA tethering by MRN and MRX. NBS1 promotes DNA bridging by MRN consistent with tethering of a repair template. MRX shows a \"synapsis-like\" DNA end-bridging, stimulated by the Xrs2 subunit. Our results highlight the different ways MRN and MRX bridge DNA, and the results are in agreement with their key roles in HR and NHEJ, respectively, and contribute to the understanding of the roles of NBS1 and Xrs2 in DSB repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    创伤性脑损伤(TBI)的诊断和评估是患者治疗和预后的关键步骤。关于是否可以引入用于信号检测和评估的理想设备,该设备可以直接将数字信号与TBI连接,仍然存在一个常见问题,从而实现评估信号的迅速响应以及检测过程的灵敏和特定功能。在这里,提出了一种利用具有TRTK-12肽修饰的纳米通道的多孔多孔膜来检测S100B(TBI生物标志物)和评估TBI严重性的方法。该方法利用TRTK-12肽与S100B蛋白的特异键合力,随着纳米通道的纳米限制效应,为了实现高灵敏度(LOD:0.002ngmL-1)和特异性(ΔI/I0:44.7%),利用离子电流变化作为指标。所提出的方法,既敏感又具体,为实时评估TBI严重程度提供了一种简单而响应迅速的方法。这种创新技术为未来诊断和治疗集成设备的发展提供了宝贵的科学见解。
    The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过反向电渗析(RED)可以将河流水和海水之间的渗透能转化为电能。然而,轻松制造具有高能量转换效率的先进红色膜,大面积,和优良的机械性能仍然是一个挑战。碳纳米管(CNT)表现出优异的导电性,并为离子传输提供合适的通道,但不能独立地形成膜,这限制了渗透能转换中的相关应用。在这里,通过将羟基封端的聚丁二烯作为基质和碳纳米管作为传输纳米通道,制备了一种新的有机-无机复合膜。对纳米管进行预等离子体处理,以增加纳米通道的表面电荷密度和传输能力,提高离子选择性和能量转换效率。在实际海水/河水条件下,开发的膜提供〜5.1W/m2的功率密度,并显示出良好的机械强度(219兆帕)。我们的工作为理想的纳米通道无法独立形成膜所带来的问题提供了简便的解决方案,并为RED膜在渗透能转换中的应用铺平了道路。
    The osmotic energy between riverine water and seawater can be converted into electricity by reverse electrodialysis (RED). However, the facile fabrication of advanced RED membranes with high energy conversion efficiencies, large areas, and excellent mechanical properties remains a challenge. Carbon nanotubes (CNTs) exhibit excellent conductivity and provide suitable channels for ion transport but cannot form membranes independently, which limits the related applications in osmotic energy conversion. Herein, a new organic-inorganic composite membrane is prepared by combining hydroxyl-terminated polybutadiene as a matrix and carbon nanotubes as transport nanochannels. The nanotubes are pre-subjected to plasma treatment to increase the surface charge density and transport capacity of the nanochannels, improving the ion selectivity and energy conversion efficiency. Under actual seawater/river water conditions, the developed membrane delivers a power density of ∼5.1 W/m2 and shows good mechanical strength (219 MPa). Our work provides a facile solution to the problem posed by the inability of ideal nanochannels to form membranes independently and paves the way for the application of RED membranes in osmotic energy conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    利用海水和河水之间相互作用的渗透能的潜力被认为是有前途的,环保,可再生,和可持续的动力来源。反向电渗析(RED)技术因其通过组合具有不同盐度水平的浓缩和稀释流发电的能力而获得了极大的兴趣。具有定制的离子传输动力学的纳米流体膜能够有效收集可再生渗透能。在这方面,具有丰富纳米通道的阳极氧化铝(AAO)膜提供了一种具有成本效益的纳米流体平台,以获得具有高密度有序孔的结构。AAO可用于构建具有增强的离子通量和选择性的非对称复合膜,以提高输出功率。在这次审查中,我们首先介绍了AAO的基本结构和性质,然后总结了使用AAO和其他纳米结构材料的不对称膜的制造技术。随后,我们讨论了在构建包含AAO的非对称结构中使用的材料,同时强调了材料选择和设计如何抵抗和促进有效的能量转换。最后,我们对未来的应用进行了展望,并解决了成功实现渗透能量转换所需克服的挑战。
    The potential of harnessing osmotic energy from the interaction between seawater and river water has been recognized as a promising, eco-friendly, renewable, and sustainable source of power. The reverse electrodialysis (RED) technology has gained significant interest for its ability to generate electricity by combining concentrated and diluted streams with different levels of salinity. Nanofluidic membranes with tailored ion transport dynamics enable efficient harvesting of renewable osmotic energy. In this regard, anodic aluminum oxide (AAO) membranes with abundant nanochannels provide a cost-effective nanofluidic platform to obtain structures with a high density of ordered pores. AAO can be utilized in constructing asymmetric composite membranes with enhanced ion flux and selectivity to improve output power generation. In this review, we first present the fundamental structure and properties of AAO, followed by summarizing the fabrication techniques for asymmetric membranes using AAO and other nanostructured materials. Subsequently, we discuss the materials employed in constructing asymmetric structures incorporating AAO while emphasizing how material selection and design can resist and promote efficient energy conversion. Finally, we provide an outlook on future applications and address the challenges that need to be overcome for successful osmotic energy conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用纳米流体离子选择性膜的反向电渗析(RED)可以将海水和河水之间的盐度差转化为电能。然而,纤维素的非均相改性反应通常导致表面电荷的不均匀分布,从而阻碍了用于能量转换的基于纤维素的纳米流体膜的改进。在这里,开发了基于具有相反电荷特性的纤维素纳米纤维(CNF)膜的RED装置,用于产生盐度梯度功率。使用2,2,6,6-四甲基哌啶1-氧基自由基(TEMPO)氧化改性合成了具有不同负电荷密度的阴离子-CNF膜(A-CNF),而阳离子-CNF膜(C-CNF)是通过醚化制备的。通过混合人造海水和河水,CNFRED器件的输出功率密度可达2.87Wm-2。串联连接的30个RED单元的输出电压可高达3.11V,可用于直接为微型电子设备供电。LED灯,计算器,等。这项工作的结果为离子交换膜在盐度梯度能量收集中的广泛应用提供了可行的可能性。
    Reverse electrodialysis (RED) using nanofluidic ion-selective membrane may convert the salinity difference between seawater and river water into electricity. However, heterogeneous modification reactions of cellulose commonly leads to the inhomogeneous distribution of surface charges, thereby hampering the improvement of cellulose-based nanofluidic membranes for energy conversion. Herein, RED devices based on cellulose nanofibers (CNF) membranes with opposite charge characteristics were developed for the generation of salinity gradient power. Anion-CNF membrane (A-CNF) with varying negative charge densities was synthesized using 2,2,6,6-Tetramethylpiperidine 1-oxy radical (TEMPO) oxidation modification, whereas cation-CNF membrane (C-CNF) was prepared through etherification. By mixing artificial seawater and river water, the output power density of CNF RED device is up to 2.87 W m-2. The output voltage of 30 RED units connected in series may reach up to 3.11 V, which can be used to directly power tiny electronic devices viz. LED lamp, calculator, etc. The results of this work provide a feasible possibility for widespread application of ion exchange membranes for salinity gradient energy harvesting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米流体忆阻器是基于表现出历史依赖性离子电导率的纳米约束流体系统的存储电阻器。在哈佛架构之外建立强大的计算系统,这些基于离子的神经形态装置由于离子导体的独特特性而引起了巨大的研究关注。然而,纳米流体忆阻器的设计仍处于初级阶段,开发基于纳米流体的神经形态设备迫切需要对纳米流体系统合理设计的系统指导。在这里,我们提出了对历史的系统回顾,纳米流体忆阻器的主要机制和潜在应用,以便对基于纳米流体系统的忆阻器的设计原理给出一个前瞻性的观点。此外,根据这些设备的现状,进一步讨论了这个有前途的领域的一些基本挑战,以显示这些基于离子的设备的可能应用。
    Nanofluidic memristors are memory resistors based on nanoconfined fluidic systems exhibiting history-dependent ion conductivity. Toward establishing powerful computing systems beyond the Harvard architecture, these ion-based neuromorphic devices attracted enormous research attention owing to the unique characteristics of ion-based conductors. However, the design of nanofluidic memristor is still at a primary state and a systematic guidance on the rational design of nanofluidic system is desperately required for the development of nanofluidic-based neuromorphic devices. Herein, we proposed a systematic review on the history, main mechanism and potential application of nanofluidic memristors in order to give a prospective view on the design principle of memristors based on nanofluidic systems. Furthermore, based on the present status of these devices, some fundamental challenges for this promising area were further discussed to show the possible application of these ion-based devices.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纳米流体系统中的分子传输表现出纳米级特有的性质。这里,粒子和表面之间的静电和空间相互作用成为决定粒子传输的主要因素。由于表面和带电粒子之间的静电相互作用,在带电表面的固液界面处形成双电层(EDL)。在这些系统中,可调电荷选择性纳米通道可以通过在固液界面处经由EDL的共离子排斥和反离子富集来操纵静电门控来产生。在这种情况下,静电门控已用于调节纳米流体膜的选择性,用于药物输送,纳米流体晶体管,和FlowFET,在其他应用中。虽然存在大量研究纳米流体系统的文献,缺乏对这些系统中涉及的所有主要参数的全面分析。在这里,我们进行了全面的建模研究,通过实验分析证实,以评估纳米通道尺寸的影响,电解质性能,表面化学,栅极电压,介电性能,以及分子电荷和大小对纳米通道中带电分析物的排斥和富集的影响。我们发现静电门控中的泄漏电流,经常被忽视,在分子排斥中起主导作用。重要的是,通过独立考虑所有离子物种,我们发现抗衡离子在表面附近竞争形成EDL,导致浓度分布几乎不可能用分析模型预测。对这些纳米流体现象有更深入的了解将有助于开发用于医疗和工业应用的创新小型化系统。
    Molecular transport in nanofluidic systems exhibits properties that are unique to the nanoscale. Here, the electrostatic and steric interactions between particle and surfaces become dominant in determining particle transport. At the solid-liquid interface of charged surfaces an electric double layer (EDL) forms due to electrostatic interactions between surfaces and charged particles. In these systems, tunable charge-selective nanochannels can be generated by manipulating electrostatic gating via co-ions exclusion and counterions enrichment of the EDL at the solid-liquid interface. In this context, electrostatic gating has been used to modulate the selectivity of nanofluidic membranes for drug delivery, nanofluidic transistors, and FlowFET, among other applications. While an extensive body of literature investigating nanofluidic systems exists, there is a lack of a comprehensive analysis accounting for all major parameters involved in these systems. Here we performed an all-encompassing modeling investigation corroborated by experimental analysis to assess the influence of nanochannel size, electrolyte properties, surface chemistry, gate voltage, dielectric properties, and molecular charge and size on the exclusion and enrichment of charged analytes in nanochannels. We found that the leakage current in electrostatic gating, often overlooked, plays a dominant role in molecular exclusion. Importantly, by independently considering all ionic species, we found that counterions compete for EDL formation at the surface proximity, resulting in concentration distributions that are nearly impossible to predict with analytical models. Achieving a deeper understanding of these nanofluidic phenomena will help the development of innovative miniaturized systems for both medical and industrial applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号