nanofibers

纳米纤维
  • 文章类型: Journal Article
    脊髓损伤(SCI)是一种严重的中枢神经系统疾病,导致不可逆转的日常活动和残疾。SCI涉及过度的炎症反应,其特征是存在高水平的促炎M1巨噬细胞,神经元线粒体能量缺乏,加重二次损伤,阻碍轴突再生。本研究深入研究SCI的机制复杂性,从神经免疫调节和线粒体功能的角度提供见解,导致促纤维化巨噬细胞表型和能量供应不足。为了应对这些挑战,我们开发了一种智能支架,将模拟酶的纳米颗粒-氧化铈(COPs)掺入纳米纤维(NS@COP)中,旨在开创一种有针对性的神经免疫修复策略,拯救巨噬细胞上的CGRP受体,同时重塑线粒体功能。我们的发现表明,整合的COP通过上调受体活性修饰蛋白1(RAMP1)恢复促炎巨噬细胞对降钙素基因相关肽(CGRP)信号的反应,CGRP受体的重要组成部分。这促进了巨噬细胞命运对抗炎促分辨率M2表型的承诺,然后减轻胶质瘢痕的形成。此外,NS@COP植入还保护神经元线粒体功能。总的来说,我们的研究结果表明,将纳米酶COP纳米颗粒整合到纳米纤维支架中的策略通过合理调节神经免疫通讯和线粒体功能,为脊髓创伤提供了一个有前景的治疗候选方案.
    Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了提高二氧化硅纳米纤维(SiO2NFs)对铯离子(Cs+)的选择性分离性能,克服普鲁士蓝纳米颗粒(PBNPs)的缺陷,制备PB/SiO2-NH2NFs以从水中除去Cs。其中,3-氨基丙基三乙氧基硅烷(APTES)与SiO2进行烷基化反应,形成了致密的Si-O-Si网络结构,修饰了SiO2NF的表面。同时,APTES中的氨基官能团与Fe3+结合,然后与Fe2+反应形成PBNP,牢固地固定在氨基化的SiO2NFs表面上。在我们的实验中,PB/SiO2-NH2NFs的最大吸附量为111.38mg/g,比SiO2NFs高31.5mg/g。同时,在第五个周期之后,PB/SiO2-NH2NFs吸附剂对Cs的去除率为75.36%±3.69%。此外,结合Freundlich模型和准两阶段拟合模型,分别。进一步的机理分析表明,PB/SiO2-NH2NFs与Cs+的键合主要是离子交换的协同作用,静电吸附和膜分离。
    To improve the selective separation performance of silica nanofibers (SiO2 NFs) for cesium ions (Cs+) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO2-NH2 NFs were prepared to remove Cs+ from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO2, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO2 NFs. Meanwhile, the amino functional groups in APTES combined with Fe3+ and then reacted with Fe2+ to form PB NPs, which anchored firmly on the aminoated SiO2 NFs surface. In our experiment, the maximum adsorption capacity of PB/SiO2-NH2 NFs was 111.38 mg/g, which was 31.5 mg/g higher than that of SiO2 NFs. At the same time, after the fifth cycle, the removal rate of Cs+ by PB/SiO2-NH2 NFs adsorbent was 75.36% ± 3.69%. In addition, the adsorption isotherms and adsorption kinetics of PB/SiO2-NH2 NFs were combined with the Freundlich model and the quasi-two-stage fitting model, respectively. Further mechanism analysis showed that the bond between PB/SiO2-NH2 NFs and Cs+ was mainly a synergistic action of ion exchange, electrostatic adsorption and membrane separation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    红景天苷(SAL)是红景天最有效的成分,一种传统的中药。隐丹参酮(CT)是丹参的主要脂溶性提取物,在成骨方面表现出相当大的应用潜力。在这里,通过同轴静电纺丝成功制备了负载CT和SAL的聚己内酯/明胶纳米纤维膜(PSGC膜),并对其进行了表征。
    在本研究中采用了这种能够持续和控制药物释放的膜。将膜与骨髓间充质干细胞和人脐静脉内皮细胞共培养显示出优异的生物相容性,并表现出成骨和血管生成能力。此外,PSGC膜释放药物激活Wnt/β-catenin信号通路,促进成骨分化和血管化。评估膜的血管形成和成骨能力,涉及移植到大鼠皮下区域,并评估大鼠颅骨的骨再生缺损,分别。显微计算机断层扫描,组织学检查,免疫组织化学,和免疫荧光染色证实膜的突出血管生成能力术后两周,术后八周在大鼠颅骨缺损中观察到成骨的发生率较高。
    总的来说,SAL和CT加载的同轴电纺纳米纤维膜协同增强骨修复和再生。
    UNASSIGNED: Salidroside (SAL) is the most effective component of Rhodiola rosea, a traditional Chinese medicine. Cryptotanshinone (CT) is the main fat-soluble extract of Salvia miltiorrhiza, exhibiting considerable potential for application in osteogenesis. Herein, a polycaprolactone/gelatin nanofiber membrane loaded with CT and SAL (PSGC membrane) was successfully fabricated via coaxial electrospinning and characterized.
    UNASSIGNED: This membrane capable of sustained and controlled drug release was employed in this study. Co-culturing the membrane with bone marrow mesenchymal stem cells and human umbilical vein endothelial cells revealed excellent biocompatibility and demonstrated osteogenic and angiogenic capabilities. Furthermore, drug release from the PSGC membrane activated the Wnt/β-catenin signaling pathway and promoted osteogenic differentiation and vascularization. Evaluation of the membrane\'s vascularization and osteogenic capacities involved transplantation onto a rat\'s subcutaneous area and assessing rat cranium defects for bone regeneration, respectively. Microcomputed tomography, histological tests, immunohistochemistry, and immunofluorescence staining confirmed the membrane\'s outstanding angiogenic capacity two weeks post-operation, with a higher incidence of osteogenesis observed in rat cranial defects eight weeks post-surgery.
    UNASSIGNED: Overall, the SAL- and CT-loaded coaxial electrospun nanofiber membrane synergistically enhances bone repair and regeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:糖尿病伤口面临重大挑战,特别是在细菌感染和延迟愈合方面。因此,解决局部细菌问题和促进伤口加速愈合至关重要。在这次调查中,我们利用静电纺丝来制造包封MXene包封的微凝胶和壳聚糖/明胶聚合物的微凝胶/纳米纤维膜。
    结果:薄膜敷料促进了近红外(NIR)下的程序化光热疗法(PPT)和轻度光热疗法(MPTT),展示快速和广泛的抗菌和生物膜破坏能力。PPT效果在52°C下在5分钟内实现快速灭菌,并在10分钟内分散成熟的生物膜。同时,通过调整NIR功率以引起局部温和加热(42°C),敷料刺激成纤维细胞增殖和迁移,显着增强血管化。此外,体内实验成功验证了薄膜敷料,强调其在解决糖尿病伤口的复杂性方面的巨大潜力。
    结论:负载MXene微凝胶的纳米纤维敷料采用温度协调的光热疗法,有效地融合了高温灭菌和低温促进伤口愈合的优点。它表现得很快,广谱抗菌和生物膜破坏能力,特殊的生物相容性,对促进细胞增殖和血管化具有显著的作用。这些结果肯定了我们的纳米纤维敷料的功效,强调其在解决糖尿病伤口因感染而难以愈合的挑战方面的巨大潜力。
    BACKGROUND: Diabetic wounds present significant challenges, specifically in terms of bacterial infection and delayed healing. Therefore, it is crucial to address local bacterial issues and promote accelerated wound healing. In this investigation, we utilized electrospinning to fabricate microgel/nanofiber membranes encapsulating MXene-encapsulated microgels and chitosan/gelatin polymers.
    RESULTS: The film dressing facilitates programmed photothermal therapy (PPT) and mild photothermal therapy (MPTT) under near-infrared (NIR), showcasing swift and extensive antibacterial and biofilm-disrupting capabilities. The PPT effect achieves prompt sterilization within 5 min at 52 °C and disperses mature biofilm within 10 min. Concurrently, by adjusting the NIR power to induce local mild heating (42 °C), the dressing stimulates fibroblast proliferation and migration, significantly enhancing vascularization. Moreover, in vivo experimentation successfully validates the film dressing, underscoring its immense potential in addressing the intricacies of diabetic wounds.
    CONCLUSIONS: The MXene microgel-loaded nanofiber dressing employs temperature-coordinated photothermal therapy, effectively amalgamating the advantageous features of high-temperature sterilization and low-temperature promotion of wound healing. It exhibits rapid, broad-spectrum antibacterial and biofilm-disrupting capabilities, exceptional biocompatibility, and noteworthy effects on promoting cell proliferation and vascularization. These results affirm the efficacy of our nanofiber dressing, highlighting its significant potential in addressing the challenge of diabetic wounds struggling to heal due to infection.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用电纺纳米纤维和商业粘合剂聚合物膜开发了用于原位电化学检测细胞生物标志物的新型支架。细胞生物标志物的电化学感测需要在(生物)传感器表面上/附近以保持适当的电活性可用表面并避免表面钝化和传感器损坏的方式培养细胞。这可以通过采用允许细胞具有正常行为并且不改变电化学检测的生物相容性纳米纤维网来实现。为了更好的机械稳定性和易于处理,尼龙6/6纳米纤维被收集在商业聚合物膜上,在最佳纤维密度下,获得双层平台。为了证明预制脚手架的功能,细胞应激的筛选已经实现了整合黑色素瘤B16-F10细胞和换能器上的(生物)传感器组件,而黑色素胞吐作用已使用商业电极成功定量。直接在(生物)传感器的表面上或在空间上与之分离,在基于电纺纳米纤维的生物传感平台中整合细胞培养物代表了一种强大的生物分析工具,能够提供有关生物标志物释放的实时信息,酶活性或抑制,和监测各种细胞事件。
    A novel scaffold for in situ electrochemical detection of cell biomarkers was developed using electrospun nanofibers and commercial adhesive polymeric membranes. The electrochemical sensing of cell biomarkers requires the cultivation of the cells on/near the (bio)sensor surface in a manner to preserve an appropriate electroactive available surface and to avoid the surface passivation and sensor damage. This can be achieved by employing biocompatible nanofiber meshes that allow the cells to have a normal behavior and do not alter the electrochemical detection. For a better mechanical stability and ease of handling, nylon 6/6 nanofibers were collected on commercial polymeric membranes, at an optimal fiber density, obtaining a double-layered platform. To demonstrate the functionality of the fabricated scaffold, the screening of cellular stress has been achieved integrating melanoma B16-F10 cells and the (bio)sensor components on the transducer whereas the melanin exocytosis was successfully quantified using a commercial electrode. Either directly on the surface of the (bio)sensor or spatially detached from it, the integration of cell cultures in biosensing platforms based on electrospun nanofibers represents a powerful bioanalytical tool able to provide real-time information about the biomarker release, enzyme activity or inhibition, and monitoring of various cellular events.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    伤口愈合是一个复杂的过程,协调各种细胞的协调行动,细胞因子和生长因子。纳米技术通过提供新的材料和方法将生物活性分子输送到伤口部位,为增强愈合过程提供了令人兴奋的新可能性。本文阐述了利用纳米粒子的最新进展,用于伤口愈合的纳米纤维和纳米片。它全面讨论了每种材料的优点和局限性,以及它们在各种类型伤口中的潜在应用。这些材料中的每一种,尽管共享公共属性,可以表现出不同的实际特征,使它们对于愈合各种类型的伤口特别有价值。在这次审查中,我们的主要重点是全面概述当前纳米粒子的最新应用,纳米纤维,纳米片和它们的组合对伤口愈合,作为指导研究人员在伤口愈合研究中适当利用这些纳米材料的宝贵资源。需要进一步的研究以深入了解这种类型的纳米材料在临床环境中的应用。
    Wound healing is a complex process that orchestrates the coordinated action of various cells, cytokines and growth factors. Nanotechnology offers exciting new possibilities for enhancing the healing process by providing novel materials and approaches to deliver bioactive molecules to the wound site. This article elucidates recent advancements in utilizing nanoparticles, nanofibres and nanosheets for wound healing. It comprehensively discusses the advantages and limitations of each of these materials, as well as their potential applications in various types of wounds. Each of these materials, despite sharing common properties, can exhibit distinct practical characteristics that render them particularly valuable for healing various types of wounds. In this review, our primary focus is to provide a comprehensive overview of the current state-of-the-art in applying nanoparticles, nanofibres, nanosheets and their combinations to wound healing, serving as a valuable resource to guide researchers in their appropriate utilization of these nanomaterials in wound-healing research. Further studies are necessary to gain insight into the application of this type of nanomaterials in clinical settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    电纺纳米纤维在纳米结构材料的合成中表现出巨大的潜力,从而为增强伤口护理的功效提供了有希望的途径。本研究旨在探讨两种生物大分子的伤口愈合潜力,PCL-明胶纳米纤维粘附骨髓间充质干细胞(BMSCs)。纳米纤维的表征显示平均纤维直径为200至300nm,具有对应于聚己内酯(PCL)和明胶的独特元素峰。此外,骨髓来源的BMSCs整合到纳米纤维中,通过体外和体内方法系统地评估了它们的伤口再生潜力。体外评估证实,掺入BMSC的纳米纤维增强了细胞活力和关键的细胞过程,如粘附,和扩散。随后,进行体内研究以证明纳米纤维的伤口愈合功效。观察到掺入纳米纤维的BMSCs的伤口愈合率超过了这两者,纳米纤维和单独的BMSCs。此外,组织形态学分析显示,加入纳米纤维组的BMSCs加速了再上皮化和改善了伤口收缩。与BMSC结合的制造的纳米纤维在动物模型中表现出优异的伤口再生,并且可以用作伤口愈合贴片。
    Electrospun nanofibers exhibit a significant potential in the synthesis of nanostructured materials, thereby offering a promising avenue for enhancing the efficacy of wound care. The present study aimed to investigate the wound-healing potential of two biomacromolecules, PCL-Gelatin nanofiber adhered with bone marrow-derived mesenchymal stem cells (BMSCs). Characterisation of the nanofiber revealed a mean fiber diameter ranging from 200 to 300 nm, with distinctive elemental peaks corresponding to polycaprolactone (PCL) and gelatin. Additionally, BMSCs derived from bone marrow were integrated into nanofibers, and their wound-regenerative potential was systematically evaluated through both in-vitro and in-vivo methodologies. In-vitro assessments substantiated that BMSC-incorporated nanofibers enhanced cell viability and crucial cellular processes such as adhesion, and proliferation. Subsequently, in-vivo studies were performed to demonstrate the wound-healing efficacy of nanofibers. It was observed that the rate of wound healing of BMSCs incorporated nanofibers surpassed both, nanofiber and BMSCs alone. Furthermore, histomorphological analysis revealed accelerated re-epithelization and improved wound contraction in BMSCs incorporated nanofiber group. The fabricated nanofiber incorporated with BMSCs exhibited superior wound regeneration in animal model and may be utilised as a wound healing patch.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    以线性两亲性嵌段共聚物为模板是制备介孔资料的重要办法。然而,获得的组件通常对合成条件敏感,这阻碍了在某些环境中制备这种介孔材料。在这里,我们报告了一种通用策略,该策略使用一种金属氧化物(TiO2,ZrO2,WO3,CeO2)制备介孔金属氧化物纳米纤维(NFs),或两种(TiO2/WO3,TiO2/ZrO2,TiO2/CeO2)和三种(TiO2/WO3/CuO)金属氧化物作为复合物。模板由修饰的β-环糊精作为大分子的中心组成,该大分子依次连接到聚苯乙烯嵌段上,聚(丙烯酸),和聚(环氧乙烷)。在静电纺丝条件下,形成稳定的单分子胶束,并有效地与金属离子共组装形成纤维状纳米结构。如各种表征方法所示,合成的TiO2及其衍生的复合NFs在煅烧后保持笔直和连续的纤维结构,和TiO2NFs表现出直径为10.8nm的均匀中孔和143.3m2g-1的大Brunauer-Emmett-Teller表面积。受益于独特的结构,修改后仍然存在,Pt修饰的介孔TiO2NFs在可见光光催化降解四环素方面表现出优异的能力,这是优于商业P25催化剂。这项研究揭示了制备纤维状介孔金属氧化物的有希望的策略。
    The use of linear amphiphilic block copolymers as templates is an important method for the preparation of mesoporous materials. However, the obtained assemblies are usually sensitive to synthetic conditions, which impedes the preparation of such mesoporous materials in certain environments. Herein, we report a universal strategy applying an amphiphilic multi-arm triblock copolymer in the preparation of mesoporous metal oxide nanofibers (NFs) using one metal oxide (TiO2, ZrO2, WO3, CeO2), or two (TiO2/WO3, TiO2/ZrO2, TiO2/CeO2) and three (TiO2/WO3/CuO) metal oxides as composites. The template consists of modified β-cyclodextrin as the center of the macromolecule which is attached sequentially to a block of polystyrene, poly(acrylic acid), and poly(ethylene oxide). Under electrospinning conditions, stable unimolecular micelles are formed and effectively co-assemble with metal ions to form fibrous nanostructures. As indicated by various characterization methods, the synthesized TiO2 and its derived composite NFs maintain a straight and continuous fibrous structure after calcination, and TiO2 NFs exhibit uniform mesopores of 10.8 nm in diameter and a large Brunauer-Emmett-Teller surface area of 143.3 m2 g-1. Benefiting from the characteristic structure, still present after modification, Pt-decorated mesoporous TiO2 NFs display excellent ability in the visible-light photocatalytic degradation of tetracycline, which is superior to the commercial P25 catalyst. This study reveals a promising strategy for the preparation of fibrous mesoporous metal oxides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    提出了一种新的方法,利用电场和X射线辐照来氧化元素汞(Hg0)并将其封装在由聚酰胺6/壳聚糖制成的纳米纤维垫内。X射线通过气体分子的光电离产生电子,从而极大地促进了Hg0向Hg的转化。正极和负极电极产生施加磁力的电场,导致氧化元素汞向负极电极的重定向,与聚酰胺6/壳聚糖纳米纤维垫偶联。聚酰胺6/壳聚糖纳米纤维暴露于氧化汞的评价结果表明,在专门设计的过滤装置的蒸汽中发现,以两种不同的形式被捕获。首先,它是化学键合的,总浓度为0.2至10ng。其次,它以每分钟10μg/m3的Hg浓度保留在聚酰胺6/壳聚糖纳米纤维的表面上。然而,浓度为10微克/立方米的汞被认为是重要的,考虑到每个燃煤电厂的汞排放水平通常在约4.72至44.07微克/立方米之间变化。因此,这项研究提出了减少燃煤电厂汞排放的可行方法,这可能会导致更低的运营费用和更少的二次环境影响。
    A novel approach was proposed, utilizing an electrical field and X-ray irradiation to oxidize elemental mercury (Hg0) and encapsulate it within a nanofibrous mat made of Polyamide 6/Chitosan. The X-rays contributed significantly to the conversion of Hg0 into Hg+ by producing electrons through the photoionization of gas molecules. The positive and negative pole electrodes generated an electric field that exerted a magnetic force, resulting in the redirection of oxidized elemental mercury towards the negative pole electrode, which was coupled with a Polyamide 6/Chitosan nanofiber mat. The evaluation of the Polyamide 6/Chitosan nanofibers exposed to oxidized mercury showed that the mercury, found in the steam of a specially designed filtration device, was captured in two different forms. Firstly, it was chemically bonded with concentrations ranging from 0.2 to 10 ng of Hg in total. Secondly, it was retained on the surface of the Polyamide 6/Chitosan nanofibers with a concentration of 10 microg/m3 of Hg per minute. Nevertheless, a concentration of 10 microg/m3 of mercury is considered significant, given that the emission levels of mercury from each coal power plant typically vary from approximately 4.72 to 44.07 microg/m3. Thus, this research presents a viable approach to reducing mercury emissions from coal-fired power plants, which could result in lower operational expenses and less secondary environmental effects.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    纳米纤维素,来自可再生生物质来源的纳米级衍生物,在水中具有显著的胶体特性,机械强度,和生物相容性。它成为水中各种纳米材料的有前途的生物基分散剂。这篇小型评论探讨了纤维素纳米材料(纳米晶体或纳米纤维)与水之间的相互作用,阐明这可能如何使他们成为一种环保分散剂的潜力。我们探索了从自上而下的过程中衍生的纳米纤维素的潜力,纳米晶体,和分散碳纳米材料的纳米纤维,半导体氧化物纳米粒子,和其他纳米材料在水中。我们还强调了其优于传统方法的优势,不仅有效地分散了这些纳米材料,而且有可能消除对进一步化学处理或支持稳定剂的需求。这不仅保留了纳米材料在水分散体中的特殊性能,但甚至可能导致新的混合功能的出现。总的来说,这篇小型评论强调了纳米纤维素作为各种纳米材料的绿色分散剂的非凡多功能性,激发进一步的研究,将其潜力扩展到其他纳米材料和应用。
    Nanocellulose, a nanoscale derivative from renewable biomass sources, possesses remarkable colloidal properties in water, mechanical strength, and biocompatibility. It emerges as a promising bio-based dispersing agent for various nanomaterials in water. This mini-review explores the interaction between cellulose nanomaterials (nanocrystals or nanofibers) and water, elucidating how this may enable their potential as an eco-friendly dispersing agent. We explore the potential of nanocellulose derived from top-down processes, nanocrystals, and nanofibers for dispersing carbon nanomaterials, semiconducting oxide nanoparticles, and other nanomaterials in water. We also highlight its advantages over traditional methods by not only effectively dispersing those nanomaterials but also potentially eliminating the need for further chemical treatments or supporting stabilizers. This not only preserves the exceptional properties of nanomaterials in aqueous dispersion, but may even lead to the emergence of novel hybrid functionalities. Overall, this mini-review underscores the remarkable versatility of nanocellulose as a green dispersing agent for a variety of nanomaterials, inspiring further research to expand its potential to other nanomaterials and applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号