manganese dioxide

二氧化锰
  • 文章类型: Journal Article
    二氧化锰(MnO2),以其丰富的天然晶相而闻名,成为降解污染物的主要催化剂候选物。其晶相与催化活性的关系,特别是对于高碘酸盐活化,既含糊不清又有争议。这项研究描述了各种合成MnO2相结构对其催化高碘酸盐辅助污染物氧化能力的影响。五种不同的MnO2相结构(α-,β-,γ-,δ-,和ε-MnO2)被制备和评估,以激活高碘酸盐和降解污染物,顺序如下:α-MnO2>γ-MnO2>β-MnO2>ε-MnO2>δ-MnO2。通过淬火实验,电子顺磁共振测试,和原位电化学研究,我们发现电子转移介导的过程驱动污染物降解,由高度反应性的亚稳态中间络合物(MnO2/PI*)促进。定量结构-活性关系分析进一步表明,降解效率与晶相和Mn(IV)含量密切相关。突出显示它作为一个关键的活动网站。此外,α-MnO2相表现出卓越的回收稳定性,能够在连续流动填充床反应器中有效去除污染物168小时。因此,α-MnO2/PI被证明在矿化有机污染物和降低其毒性方面非常有效,强调其在环境修复方面的巨大潜力。
    Manganese dioxide (MnO2), renowned for its abundant natural crystal phases, emerges as a leading catalyst candidate for the degradation of pollutants. The relationship between its crystal phase and catalytic activity, particularly for periodate activation, has remained both ambiguous and contentious. This study delineates the influence of various synthetic MnO2 phase structures on their capabilities in catalyzing periodate-assisted pollutant oxidation. Five distinct MnO2 phase structures (α-, β-, γ-, δ-, and ε-MnO₂) were prepared and evaluated to activate periodate and degrade pollutants, following the sequence: α-MnO₂ > γ-MnO₂ > β-MnO₂ > ε-MnO₂ > δ-MnO₂. Through quenching experiments, electron paramagnetic resonance tests, and in situ electrochemical studies, we found an electron transfer-mediated process drive pollutant degradation, facilitated by a highly reactive metastable intermediate complex (MnO₂/PI*). Quantitative structure-activity relationship analysis further indicated that degradation efficiency is strongly associated with both the crystal phase and the Mn (IV) content, highlighting it as a key active site. Moreover, the α-MnO₂ phase demonstrated exceptional recycling stability, enabling an effective pollutant removal in a continuous flow packed-bed reactor for 168 h. Thus, α-MnO₂/PI proved highly effective in mineralizing organic pollutants and reducing their toxicities, highlighting its significant potential for environmental remediation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于电极材料的容量有限,常规水性电池的能量密度通常不令人满意。因此,必须考虑创意水性电池的设计。在这里,通过匹配S/Cu2S氧化还原对和MnO2沉积/溶解来构建水性S-MnO2电池。在这种电池中,S/Cu2S氧化还原对进行四电子转移的固-固转化反应,确保S阳极中2220mAhg-1的高比容量。此外,S/Cu2S氧化还原对的转化反应可以在酸性电解质中稳定地发生,这对于MnO2沉积/溶解是必需的。因此,S/Cu2S氧化还原对可以很好地匹配MnO2的沉积/溶解,这赋予了电池无膜配置。作为概念的证明,组装了Ah级棱柱形和单流电池,可以稳定运行超过1000小时,展示了其大规模储能的巨大潜力。这项工作拓宽了金属锰化学之外的水性电池的视野。
    The energy densities of conventional aqueous batteries are often unsatisfactory due to the limited capacities of electrode materials.Therefore, the design of creative aqueous batteries has to be considered. Herein, aqueous S-MnO2 batteries are constructed by matching S/Cu2S redox couples and MnO2 deposition/dissolution. In such batteries, S/Cu2S redox couples undergo the solid-solid conversion reaction with four-electron transfer, ensuring a high specific capacity of 2220 mAh g-1 in S anodes.Furthermore, the conversion reaction of S/Cu2S redox couples can take place stably in acidic electrolyte that is essential for the MnO2 deposition/dissolution. As a result, the S/Cu2S redox couples can match MnO2 deposition/dissolution well, which endow the batteries with a membrane-free configuration. As a proof of concept,  Ah-level prismatic and single-flow batteries were assembled and could operate stably for over 1000 h, demonstrating their great potential for large-scale energy storage. This work broadens the horizons of aqueous batteries beyond metal-manganese chemistry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胶质瘤是一种常见的脑恶性肿瘤,预后不良。虽然化疗是脑肿瘤的主要治疗方法,药物穿越血脑屏障(BBB)的能力有限以及与肿瘤缺氧相关的耐药性的发展阻碍了其有效性。在这里,我们报道了由肿瘤C6细胞膜(mT)和细菌外膜囊泡(OMVs)组成的混合伪装多功能纳米囊泡,并共同负载二氧化锰纳米粒子(MnO2NP)和多柔比星(DOX),以协同增强神经胶质瘤的化疗/化学动力学治疗(CDT).由于OMV介导的BBB渗透和mT遗传的肿瘤归巢特性,MnO2-DOX@mT/OMV可以通过“质子海绵效应”介导的溶酶体逃逸穿透BBB并增强肿瘤细胞对DOX的特异性摄取。这增强了由DOX诱导的凋亡效应,并通过促进DOX在肿瘤部位的积累而使DOX相关的心脏毒性最小化。此外,MnO2-DOX@mT/OMV中的MnO2NP可以通过加速与DOX产生的H2O2的Fenton样反应并实现谷胱甘肽(GSH)消耗诱导的谷胱甘肽过氧化物酶4(GPX4)失活来产生有效的CDT。这些结果表明,MnO2-DOX@mT/OMV,设计用于脑肿瘤靶向,显著抑制肿瘤生长并表现出良好的生物安全性。这种创新方法通过化学疗法和CDT的潜在组合提供了抗癌治疗功效的增强。
    Glioma is a prevalent brain malignancy associated with poor prognosis. Although chemotherapy serves as the primary treatment for brain tumors, its effectiveness is hindered by the limited ability of drugs to traverse the blood-brain barrier (BBB) and the development of drug resistance linked to tumor hypoxia. Herein, we report the creation of hybrid camouflaged multifunctional nanovesicles comprising membranes of tumor C6 cells (mT) and bacterial outer membrane vesicles (OMVs) and co-loaded with manganese dioxide nanoparticles (MnO2 NPs) and doxorubicin (DOX) to synergistically enhance the chemotherapy/chemodynamic therapy (CDT) of glioma. Owing to OMV-mediated BBB penetration and mT-inherited tumor-homing properties, MnO2-DOX@mT/OMVs can penetrate the BBB and enhance the tumor cell-specific uptake of DOX via \"proton sponge effect\"-mediated lysosomal escape. This enhances the apoptotic effect induced by DOX and minimizing DOX-associated cardiotoxicity by facilitating the accumulation of DOX at the tumor site. Furthermore, the MnO2 NPs in MnO2-DOX@mT/OMVs can generate potent CDT by accelerating the Fenton-like reaction with DOX-generated H2O2 and achieving glutathione (GSH)-depletion-induced glutathione peroxidase 4 (GPX4) inactivation. These results showed that MnO2-DOX@mT/OMVs, designed for brain tumor targeting, significantly inhibited tumor growth and exhibited favorable biological safety. This innovative approach offers the augmentation of anticancer treatment efficacy via a potential combination of chemotherapy and CDT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    弱酸性MnO2-Zn电池因其低毒性而被认为是大规模储能系统的有希望的替代品。安全性高,和低成本。不过,MnO2随循环的降解仍然阻碍着电池的进一步发展。在这项研究中,观察到MnO2的有效容量随着充电和放电而降低,伴随着Zn─Mn─O相的出现而发生结构转变。电沉积测试表明,在充电过程中,Zn-Mn-O相是由Zn和Mn的共沉淀形成的。Further,通过添加TiOSO4作为简便的电解质添加剂,抑制了MnO2的结构变化,提高了其循环稳定性。因此,在1200mAg-1的电流下,MnO2电极对于超过1500个循环仍给出230mAhg-1的容量。在4800mAg-1的电流速率下,在10.000次循环之后,容量保持为75%。这些发现为MnO2的降解机理提供了基本见解,并提供了改善水性MnO2-Zn电池电化学性能的新策略。
    Mildly-acidic MnO2-Zn batteries are considered as a promising alternative for large-scale energy storage systems for their low toxicity, high safety, and low cost. Though, the degradation of MnO2 with cycling still hinders the further development of the batteries. In this study, it is observed that the decrease in available capacity of MnO2 with charge and discharge is accompanied by a structural transformation with the emergence of Zn─Mn─O phases. An electrodeposition test indicates that the Zn─Mn─O phase is formed from a co-precipitation of Zn and Mn during the charge process. Further, the structural change of MnO2 is suppressed and its cycle stability is improved with the addition of TiOSO4 as a facile electrolyte additive. As a result, under a current of 1200 mA g-1, the MnO2 electrode still gives a capacity of 230 mAh g-1 for over 1500 cycles. Capacity retention is 75% after 10 000 cycles under a current rate of 4800 mA g-1. These findings provide fundamental insights on the degradation mechanism of MnO2 and a new strategy to improve the electrochemical performance of aqueous MnO2-Zn batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过两步湿化学法在氟掺杂的氧化锡(FTO)导电玻璃上沉积了MnO2/聚吡咯(PPy)复合膜,包括电化学沉积和化学浴沉积(CBD)。首先通过电沉积法在FTO玻璃上生长多孔MnO2膜。第二,聚吡咯纳米粒子通过MnO2和吡咯之间的氧化还原反应聚合,使用预合成的MnO2作为骨架。然后,获得了具有珊瑚状结构的MnO2/PPy复合膜。研究了所制备薄膜的电化学和电致变色(EC)性能。结果表明,与单一的MnO2或PPy薄膜相比,MnO2/PPy复合膜具有更大的光调制(在900nm波长下67.3%),更快的响应时间(着色为4s,漂白为3s),和更高的着色效率(218.16cm2·C-1)。高着色效率证明了复合膜在将电信号转换为生动的颜色变化方面的卓越性能。电化学稳定性测试结果表明,复合膜在200次着色/漂白循环后保持稳定的EC性能。复合膜的珊瑚状结构负责更好的EC性能。
    MnO2/polypyrrole (PPy) composite films were deposited on fluorine-doped tin oxide (FTO) conductive glasses by a two-step wet-chemical method, including electrochemical deposition and chemical bath deposition (CBD). The porous MnO2 films were first grown on FTO glasses by an electrodeposition method. Second, polypyrrole nanoparticles were polymerized by the oxidation-reduction reaction between MnO2 and pyrrole, using the presynthesized MnO2 as the skeleton. Then, MnO2/PPy composite films with coral-like structures were obtained. The electrochemical and electrochromic (EC) properties of the prepared films were investigated. The results show that, compared to the single MnO2 or PPy film, the MnO2/PPy composite film has a larger optical modulation (67.3% at a wavelength of 900 nm), faster response times (4 s for coloration and 3 s for bleaching), and a higher coloration efficiency (218.16 cm2·C-1). The high coloration efficiency attests to the exceptional performance of the composite film in converting electrical signals into vivid color changes. The electrochemical stability test results show that the composite film maintains a stable EC performance after 200 coloration/bleaching cycles. The coral-like structures of the composite film are responsible for the better EC properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于纳米药物的铁凋亡相关肿瘤治疗最近获得了极大的关注。然而,治疗性能仍然受到肿瘤的物理障碍,如纤维化肿瘤基质和间质液压力升高,以及谷胱甘肽(GSH)过量等化学障碍。这些物理化学屏障阻碍纳米药物的生物利用度并损害脂质活性氧(ROS)的治疗功效。因此,这项研究开创了使用基于有机二氧化硅的纳米药物(MMONs)克服肿瘤微环境中的物理化学屏障的方法,这增强了光热-铁中毒治疗的协同作用。MMONs在克服肿瘤物理障碍方面表现出值得称赞的熟练程度,由于它们的MnO2介导的形状变形和柔软性转化能力,这有助于增强细胞内在化,增强的肿瘤积累,和优越的药物渗透。此外,MMONs具有出色的克服化学屏障的能力,包括MnO2介导的双重GSH清除和增强的ROS生成,促进铁凋亡和热休克蛋白抑制。值得注意的是,克服物理和化学屏障的整合导致在体外和体内进行放大的光热-铁凋亡协同肿瘤治疗。因此,比较蛋白质组学分析已确定促进铁凋亡,在线粒体中观察到短暂的抑制反应。这项研究旨在改进治疗策略,以更好地对抗肿瘤的复杂防御。
    Ferroptosis-related tumor therapy based on nanomedicines has recently gained significant attention. However, the therapeutic performance is still hindered by the tumor\'s physical barriers such as the fibrotic tumor matrix and elevated interstitial fluid pressure, as well as chemical barriers like glutathione (GSH) overabundance. These physicochemical barriers impede the bioavailability of nanomedicines and compromise the therapeutic efficacy of lipid reactive oxygen species (ROS). Thus, this study pioneers a manganese-mediated overcoming of physicochemical barriers in the tumor microenvironment using organosilica-based nanomedicine (MMONs), which bolsters the synergy of photothermal-ferroptosis treatment. The MMONs display commendable proficiency in overcoming tumor physical barriers, due to their MnO2-mediated shape-morphing and softness-transformation ability, which facilitates augmented cellular internalization, enhanced tumor accumulation, and superior drug penetration. Also, the MMONs possess excellent capability in chemical barrier overcoming, including MnO2-mediated dual GSH clearance and enhanced ROS generation, which facilitates ferroptosis and heat shock protein inhibition. Notably, the resulting integration of physical and chemical barrier overcoming leads to amplified photothermal-ferroptosis synergistic tumor therapy both in vitro and in vivo. Accordingly, the comparative proteomic analysis has identified promoted ferroptosis with a transient inhibitory response observed in the mitochondria. This research aims to improve treatment strategies to better fight the complex defenses of tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究旨在综合,表征,并评估了椰油酰胺丙基甜菜碱稳定的MnO2纳米颗粒(NPs)对豌豆幼苗萌发和发育的影响。合成的NP表现为50-600nm的聚集体,包括尺寸在19至50nm之间的球形颗粒。这些颗粒表现出部分结晶,由2θ=25.37、37.62、41.18、49.41、61.45和65.79°处的峰指示,MnO2的特征为具有I4/m空间群的四方晶格。量子化学模型表明,MnO2NPs与椰油酰胺丙基甜菜碱的稳定过程在能量上是有利的(ΔE>1299.000kcal/mol),并且在化学上是稳定的,正的化学硬度值(0.023≤η≤0.053eV)证实了这一点。揭示了MnO2分子与椰油酰胺丙基甜菜碱之间的相互作用,由仲氨基(NH)促进,是最可能的情况.这种确定得到了总能量(ΔE=1299.519kcal/mol)和化学硬度(η=0.053eV)的差值的支持。使用FTIR光谱进一步证实了这些发现。发现各种浓度的MnO2NPs对豌豆种子发芽的影响是非线性且模糊的。调查显示,浓度为0.1mg/L的MnO2NPs导致最高的发芽能量(91.25%),发芽性(95.60%),以及所有实验样品中根和幼苗的长度。然而,制剂浓度的增加导致轻微的生长抑制(1-10mg/L),并显着抑制幼苗和根系发育(100mg/L)。对豌豆幼苗的抗氧化指标和植物化学物质的分析表明,只有100mg/L的MnO2NPs对可溶性糖含量有负面影响,叶绿素a/b,类胡萝卜素,和酚类。相反,低浓度对光合作用指标有刺激作用。然而,所有浓度的MnO2NPs通常会降低豌豆幼苗的抗氧化潜力,ABTS参数除外。豌豆幼苗显示出显着的吸收锰的能力,在10mg/L时达到586.5μg/L,在100mg/L时达到892.6μg/L的MnO2NPs,根据科学文献,超过了豌豆的毒性水平。然而,最重要的结果是在用椰油酰胺丙基甜菜碱稳定的0.1mg/LMnO2NPs时观察到的生长刺激活性,为进一步研究提供了一个有希望的途径。
    This study aimed to synthesize, characterize, and evaluate the effect of cocamidopropyl betaine-stabilized MnO2 nanoparticles (NPs) on the germination and development of pea seedlings. The synthesized NPs manifested as aggregates ranging from 50-600 nm, comprising spherical particles sized between 19 to 50 nm. These particles exhibited partial crystallization, indicated by peaks at 2θ = 25.37, 37.62, 41.18, 49.41, 61.45, and 65.79°, characteristic of MnO2 with a tetragonal crystal lattice with a I4/m spatial group. Quantum chemical modelling showed that the stabilization process of MnO2 NPs with cocamidopropyl betaine is energetically advantageous (∆E > 1299.000 kcal/mol) and chemically stable, as confirmed by the positive chemical hardness values (0.023 ≤ η ≤ 0.053 eV). It was revealed that the interaction between the MnO2 molecule and cocamidopropyl betaine, facilitated by a secondary amino group (NH), is the most probable scenario. This ascertain is supported by the values of the difference in total energy (∆E = 1299.519 kcal/mol) and chemical hardness (η = 0.053 eV). These findings were further confirmed using FTIR spectroscopy. The effect of MnO2 NPs at various concentrations on the germination of pea seeds was found to be nonlinear and ambiguous. The investigation revealed that MnO2 NPs at a concentration of 0.1 mg/L resulted in the highest germination energy (91.25%), germinability (95.60%), and lengths of roots and seedlings among all experimental samples. However, an increase in the concentration of preparation led to a slight growth suppression (1-10 mg/L) and the pronounced inhibition of seedling and root development (100 mg/L). The analysis of antioxidant indicators and phytochemicals in pea seedlings indicated that only 100 mg/L MnO2 NPs have a negative effect on the content of soluble sugars, chlorophyll a/b, carotenoids, and phenols. Conversely, lower concentrations showed a stimulating effect on photosynthesis indicators. Nevertheless, MnO2 NPs at all concentrations generally decreased the antioxidant potential of pea seedlings, except for the ABTS parameter. Pea seedlings showed a notable capacity to absorb Mn, reaching levels of 586.5 μg/L at 10 mg/L and 892.6 μg/L at 100 mg/L MnO2 NPs, surpassing the toxic level for peas according to scientific literature. However, the most important result was the observed growth-stimulating activity at 0.1 mg/L MnO2 NPs stabilized with cocamidopropyl betaine, suggesting a promising avenue for further research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二氧化锰(MnO2),作为堆肥过程中的催化剂,可以通过多次施肥在土壤中积累。然而,它对作物生长的影响还有待探索。在这项研究中,进行了盆栽实验,以研究MnO2在各个生长阶段对番茄植物性能的影响。结果表明,MnO2降低了株高,叶数和长度减少35.53%,27.61%,和37.00%,分别,与无MnO2的对照相比,降低了果实的果实重量(23.16%)和糖酸比(29.7%)。MnO2对植物生长的不利影响可能归因于土壤中微生物活性的抑制,反映了土壤脲酶(9.30%)和酸性磷酸酶(12.52%)活性的降低。降低了营养物质的转化和吸收效率。根中营养元素的减少导致植物体内的氧化应激,抑制质膜H+-ATPase活性,从而减少营养物质的转运(例如,钙,镁,和磷)从根转移到叶。此外,植物激素吲哚丁酸,赤霉素,和茉莉酸叶被扰乱。这项研究揭示了与施用含MnO2的有机肥料相关的风险。
    Manganese dioxide (MnO2), as a catalyst in composting processes, can accumulate in soil over multiple fertilizations. However, its impact on crop growth remains to be explored. In this study, a pot experiment was conducted to investigate the impacts of MnO2 on the tomato plant performance across various growth stages. Results showed that MnO2 reduced the plant height, leaf number and length by 35.53 %, 27.61 %, and 37.00 %, respectively, and decreased the fruit weight (23.16 %) and sugar-acid ratio (29.7 %) of fruits compared to the MnO2-free control. The adverse impacts of MnO2 on plant growth might be attributed to the inhibition of microbial activity in soil reflected by the reduction of soil urease (9.30 %) and acid phosphatase (12.52 %) activities, which decreased the efficiency of nutrients conversion and uptake. The decrease of nutrient elements in roots resulted in oxidative stress in the plant, inhibiting the plasma membrane H+-ATPase activity thereby reducing the translocation of nutrients (e.g., calcium, magnesium, and phosphorus) translocation from roots to leaves. Furthermore, the phytohormones indolebutyric acid, gibberellin, and jasmonic acid of leaves were disturbed. This study reveals the risks associated with the application of MnO2-containing organic fertilizers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    椎间盘退变(IVDD)是一种世界性疾病,可引起下腰痛并降低生活质量。基于组织工程替代方案的生物治疗策略,例如椎间盘支架,辅以药物靶向治疗为IVDD带来了新的希望。在这项研究中,探讨MnO2/GelMA复合水凝胶在缓解IVDD中的作用及机制,我们用MnO2和甲基丙烯酸酯明胶(GelMA)制备了复合水凝胶,并使用压缩测试和透射电子显微镜(TEM)对其进行了表征。在复合水凝胶中培养纤维环细胞(AFC)以通过活/死和细胞骨架染色来验证生物相容性。细胞活力测定和活性氧(ROS)探针用于分析复合水凝胶在氧化损伤下的保护作用。探索改善微环境的机制,我们通过qPCR和Westernblotting检测了抗氧化和自噬相关基因和蛋白的表达水平。我们发现MnO2/GelMA复合水凝胶具有优异的生物相容性和多孔结构,促进细胞增殖。将MnO2纳米颗粒添加到GelMA中清除了AFCs中的ROS,并通过共同的SIRT1/NRF2途径诱导了抗氧化剂和细胞自噬的表达。因此,MnO2/GelMA复合水凝胶,可以通过清除细胞内ROS和抵抗氧化损伤来改善椎间盘微环境,在IVDD的治疗中有很大的应用前景。
    Intervertebral disc degeneration (IVDD) is a worldwide disease that causes low back pain and reduces quality of life. Biotherapeutic strategies based on tissue engineering alternatives, such as intervertebral disc scaffolds, supplemented by drug-targeted therapy have brought new hope for IVDD. In this study, to explore the role and mechanism of MnO2/GelMA composite hydrogels in alleviating IVDD, we prepared composite hydrogels with MnO2 and methacrylate gelatin (GelMA) and characterized them using compression testing and transmission electron microscopy (TEM). Annulus fibrosus cells (AFCs) were cultured in the composite hydrogels to verify biocompatibility by live/dead and cytoskeleton staining. Cell viability assays and a reactive oxygen species (ROS) probe were used to analyze the protective effect of the composite hydrogels under oxidative damage. To explore the mechanism of improving the microenvironment, we detected the expression levels of antioxidant and autophagy-related genes and proteins by qPCR and Western blotting. We found that the MnO2/GelMA composite hydrogels exhibited excellent biocompatibility and a porous structure, which promoted cell proliferation. The addition of MnO2 nanoparticles to GelMA cleared ROS in AFCs and induced the expression of antioxidant and cellular autophagy through the common SIRT1/NRF2 pathway. Therefore, the MnO2/GelMA composite hydrogels, which can improve the disc microenvironment through scavenging intracellular ROS and resisting oxidative damage, have great application prospects in the treatment of IVDD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究的目的是评估MnO2添加的影响(CK-0%,T1-2%和T2-5%)对城市污泥(MS)堆肥过程中的腐殖化和细菌群落。结果表明,MnO2的添加抑制了硝基螺旋体的生长,但刺激了Nonomuraea的生长,Actinomadura,链霉菌和嗜热孢子菌,随着有机物降解13.8%-19.2%,腐殖酸含量10.9%-20.6%,促进木质纤维素降解和腐殖质化。与CK相比,外切葡聚糖酶的丰度(EC:3.2.1.91),内切-1,4-β-木聚糖酶(EC:3.2.1.136)和内切甘露聚糖酶(EC:3.2.1.78)增加了88-99、52-66和4-15倍,分别。然而,5%-MnO2诱导了Mizugugakiibacter的富集,危害了农业生产环境。推荐添加2%-MnO2用于MS堆肥。此外,代谢功能分析表明MnO2的添加改变了氨基酸和碳水化合物的代谢,特别是增强丙酸盐代谢和丁酸盐代谢,但抑制柠檬酸盐循环。结构方程模型表明,Nonomuraea和Actinomadura是木质纤维素降解的主要驱动因素。本研究为通过MnO2调控MS堆肥腐殖化提供了理论指导。
    The aim of this study was to assess effects of MnO2 addition (CK-0%, T1-2% and T2-5%) on humification and bacterial community during municipal sludge (MS) composting. The results suggested that MnO2 addition inhibited the growth of Nitrospira but stimulated Nonomuraea, Actinomadura, Streptomyces and Thermopolyspora, facilitating the lignocellulose degradation and humification with the increase in organic matter degradation by 13.8%-19.2% and humic acid content by 10.9%-20.6%. Compared to CK, the abundances of exoglucanase (EC:3.2.1.91), endo-1,4-beta-xylanase (EC:3.2.1.136) and endomannanase (EC:3.2.1.78) increased by 88-99, 52-66 and 4-15 folds, respectively. However, 5%-MnO2 induced the enrichment of Mizugakiibacter that harms the environment of agricultural production. The addition of 2%-MnO2 was recommended for MS composting. Furthermore, metabolic function analysis indicated that MnO2 addition altered amino acid and carbohydrate metabolism, especially enhancing propanoate metabolism and butanoate metabolism but inhibiting citrate cycle. Structural equation modeling revealed that Nonomuraea and Actinomadura were the main drivers for lignocellulose degradation. This study provided theoretical guidance in regulating humification via MnO2 for MS composting.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号