magnetoencephalography

脑磁图
  • 文章类型: Dataset
    基底节区和连接皮质区的异常信息处理是许多神经运动障碍如帕金森病的关键。研究该系统的电生理学在人类中是困难的,因为非侵入性方法,如脑电图或脑磁图,对大脑深处区域的敏感性有限。植入治疗性深部脑刺激的电极记录,相比之下,提供清晰的脑深部信号,但不适合研究皮质活动。因此,我们结合脑磁图和来自帕金森病患者脑深部刺激电极的局部场电位记录。这里,我们提供这些数据,邀请更广泛的科学界探索丘脑底核神经活动的动力学及其与皮质的功能连接。数据集包括静息状态记录,加上两个运动任务:静态前臂伸展和自我节奏重复握拳。大多数患者均处于药物和未药物状态。连同原始数据,我们在频道上提供元数据,事件和脚本进行预处理,以帮助感兴趣的研究人员开始。
    Aberrant information processing in the basal ganglia and connected cortical areas are key to many neurological movement disorders such as Parkinson\'s disease. Investigating the electrophysiology of this system is difficult in humans because non-invasive methods, such as electroencephalography or magnetoencephalography, have limited sensitivity to deep brain areas. Recordings from electrodes implanted for therapeutic deep brain stimulation, in contrast, provide clear deep brain signals but are not suited for studying cortical activity. Therefore, we combine magnetoencephalography and local field potential recordings from deep brain stimulation electrodes in individuals with Parkinson\'s disease. Here, we make these data available, inviting a broader scientific community to explore the dynamics of neural activity in the subthalamic nucleus and its functional connectivity to cortex. The dataset encompasses resting-state recordings, plus two motor tasks: static forearm extension and self-paced repetitive fist clenching. Most patients were recorded both in the medicated and the unmedicated state. Along with the raw data, we provide metadata on channels, events and scripts for pre-processing to help interested researchers get started.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    现代神经生理学记录是使用多通道传感器阵列来执行的,所述多通道传感器阵列能够在100至1000秒中的越来越多的通道编号中记录活动。通常,潜在的低维活动模式负责观察到的动态,但是使用现有的方法很难可靠地识别这些表示,这些方法试图从单变量分析中事后总结多变量关系,或者使用当前的盲源分离方法。虽然这样的方法可以揭示吸引人的活动模式,确定要包括的组件的数量,评估其统计意义,解释它们需要在实践中广泛的人工干预和主观判断。组件选择和解释的这些困难在很大程度上是因为这些方法缺乏针对潜在时空动力学的生成模型。这里,我们描述了一种由生成模型锚定的新颖的成分分析方法,其中每个源都由生物物理启发的状态空间表示来描述。控制这种表示的参数很容易捕获组件的振荡时间动态,所以我们把它称为振荡分量分析。这些参数——振荡特性,传感器处的组分混合重量,和振荡的数量-所有这些都是在采用期望最大化算法的实例的贝叶斯框架内以数据驱动的方式推断的。我们分析了人类研究中的高维脑电图和脑磁图记录,以说明该方法对神经科学数据的潜在用途。
    Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters - the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations - all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑磁图(MEG)数据的来源分析需要计算大脑中电流源感应的磁场。这种所谓的MEG前向问题包括对人体头部中的体积传导效应的准确估计。这里,我们介绍了MEG正演问题的Cut有限元方法(CutFEM)。与四面体网格相比,CutFEM的网格划分过程对组织解剖结构的限制较少,同时能够与六面体网格相反地对弯曲的几何形状进行网格划分。为了评估新方法,我们将CutFEM与边界元法(BEM)进行了比较,该方法在n=19的体感诱发视野(SEF)小组研究中区分了三个组织区室和一个6区室六面体FEM。使用非正则化和正则化反演方法来重建20ms刺激后SEF分量(M20)的神经发生器。改变前向模型导致重建差异约1厘米的位置和相当大的方向差异。与3隔室BEM相比,测试的6隔室FEM方法显着增加了对测量数据的拟合优度。他们还展示了对回旋冠下的源的更高的准径向贡献。此外,与其他两种方法相比,CutFEM提高了源可分性。我们得出的结论是,具有6个隔室而不是3个隔室的头部模型和新的CutFEM方法是MEG源重建的有价值的补充。特别是对于主要是放射状的源。
    Source analysis of magnetoencephalography (MEG) data requires the computation of the magnetic fields induced by current sources in the brain. This so-called MEG forward problem includes an accurate estimation of the volume conduction effects in the human head. Here, we introduce the Cut finite element method (CutFEM) for the MEG forward problem. CutFEM\'s meshing process imposes fewer restrictions on tissue anatomy than tetrahedral meshes while being able to mesh curved geometries contrary to hexahedral meshing. To evaluate the new approach, we compare CutFEM with a boundary element method (BEM) that distinguishes three tissue compartments and a 6-compartment hexahedral FEM in an n = 19 group study of somatosensory evoked fields (SEF). The neural generators of the 20 ms post-stimulus SEF components (M20) are reconstructed using both an unregularized and a regularized inversion approach. Changing the forward model resulted in reconstruction differences of about 1 centimeter in location and considerable differences in orientation. The tested 6-compartment FEM approaches significantly increase the goodness of fit to the measured data compared with the 3-compartment BEM. They also demonstrate higher quasi-radial contributions for sources below the gyral crowns. Furthermore, CutFEM improves source separability compared with both other approaches. We conclude that head models with 6 compartments rather than 3 and the new CutFEM approach are valuable additions to MEG source reconstruction, in particular for sources that are predominantly radial.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    经常使用大麻的人在认知控制任务中表现出改变的脑动力,尽管经常使用大麻对提供运动控制的神经动力学的影响尚不清楚。
    我们试图研究常规使用大麻如何调节提供运动控制的神经动力学。
    34名经常使用大麻(大麻+)和33名不使用大麻(大麻-)的人接受了有关其物质使用史的结构化访谈,并执行了Eriksen侧翼任务,以绘制在高密度脑磁图(MEG)期间用于运动控制的神经动力学。将所得的神经数据转换到时频域以检查振荡活动,并使用波束形成方法进行成像。
    MEG传感器级分析揭示了在电机规划和执行过程中的稳健β(16-24Hz)和伽马振荡(66-74Hz),使用波束形成器成像。两种反应在左初级运动皮层和体素时间序列中均达到峰值,以评估自发和振荡动力学。我们的关键发现表明,大麻+组表现出较弱的自发γ活动在左初级运动皮质相对于大麻组,根据大麻的使用和行为指标进行缩放。有趣的是,经常使用大麻与振荡β和γ活性的差异无关,自发β活性没有组间差异。
    我们的研究结果表明,经常使用大麻与左侧初级运动皮层自发伽玛活动抑制有关,它与大麻使用障碍症状学的程度成比例,并与行为任务表现相结合。
    UNASSIGNED: People who regularly use cannabis exhibit altered brain dynamics during cognitive control tasks, though the impact of regular cannabis use on the neural dynamics serving motor control remains less understood.
    UNASSIGNED: We sought to investigate how regular cannabis use modulates the neural dynamics serving motor control.
    UNASSIGNED: Thirty-four people who regularly use cannabis (cannabis+) and 33 nonusers (cannabis-) underwent structured interviews about their substance use history and performed the Eriksen flanker task to map the neural dynamics serving motor control during high-density magnetoencephalography (MEG). The resulting neural data were transformed into the time-frequency domain to examine oscillatory activity and were imaged using a beamforming approach.
    UNASSIGNED: MEG sensor-level analyses revealed robust beta (16-24 Hz) and gamma oscillations (66-74 Hz) during motor planning and execution, which were imaged using a beamformer. Both responses peaked in the left primary motor cortex and voxel time series were extracted to evaluate the spontaneous and oscillatory dynamics. Our key findings indicated that the cannabis+ group exhibited weaker spontaneous gamma activity in the left primary motor cortex relative to the cannabis- group, which scaled with cannabis use and behavioral metrics. Interestingly, regular cannabis use was not associated with differences in oscillatory beta and gamma activity, and there were no group differences in spontaneous beta activity.
    UNASSIGNED: Our findings suggest that regular cannabis use is associated with suppressed spontaneous gamma activity in the left primary motor cortex, which scales with the degree of cannabis use disorder symptomatology and is coupled to behavioral task performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有证据表明,小脑在大脑中的作用并不局限于运动功能。相反,小脑活动似乎对于依赖精确事件定时和预测的各种任务至关重要。由于其复杂的结构和在通信中的重要性,人类的语音需要一个特别精确和预测协调的神经过程被成功地理解。最近的研究表明,小脑确实是语音处理的主要贡献者,但是这种贡献是如何实现的机制仍然知之甚少。本研究旨在揭示皮质-小脑协调的潜在机制,并证明其语音特异性。在对脑磁图数据的重新分析中,我们发现小脑的活动与噪声语音的节奏序列一致,不管它的清晰度。然后我们测试了这些“夹带”响应是否持续存在,以及它们如何与其他大脑区域相互作用,当有节奏的刺激停止并且时间预测必须更新时。我们发现,只有可理解的语音在小脑中产生持续的有节奏的反应。在这个“夹带回声,“但不是在有节奏的演讲中,小脑活动与左额下回有关,特别是以对应于先前刺激节奏的速率。这一发现代表了语音处理中特定小脑驱动的时间预测及其传递到皮质区域的证据。
    Evidence accumulates that the cerebellum\'s role in the brain is not restricted to motor functions. Rather, cerebellar activity seems to be crucial for a variety of tasks that rely on precise event timing and prediction. Due to its complex structure and importance in communication, human speech requires a particularly precise and predictive coordination of neural processes to be successfully comprehended. Recent studies proposed that the cerebellum is indeed a major contributor to speech processing, but how this contribution is achieved mechanistically remains poorly understood. The current study aimed to reveal a mechanism underlying cortico-cerebellar coordination and demonstrate its speech-specificity. In a reanalysis of magnetoencephalography data, we found that activity in the cerebellum aligned to rhythmic sequences of noise-vocoded speech, irrespective of its intelligibility. We then tested whether these \"entrained\" responses persist, and how they interact with other brain regions, when a rhythmic stimulus stopped and temporal predictions had to be updated. We found that only intelligible speech produced sustained rhythmic responses in the cerebellum. During this \"entrainment echo,\" but not during rhythmic speech itself, cerebellar activity was coupled with that in the left inferior frontal gyrus, and specifically at rates corresponding to the preceding stimulus rhythm. This finding represents evidence for specific cerebellum-driven temporal predictions in speech processing and their relay to cortical regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已经发现了串行依赖的神经特征,这反映了行为实验中视觉信息的吸引力偏差。
    A neural signature of serial dependence has been found, which mirrors the attractive bias of visual information seen in behavioral experiments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    反应性神经刺激(RNS)是难治性癫痫患者的一种治疗选择,当由于刺激区和雄辩皮层的重叠而无法进行手术切除时。RNS放置的术前评估通常依赖于侵入性方法。这项研究调查了经颅磁刺激(TMS)和脑磁图(MEG)无创提供关键术前信息的潜力。我们假设这些非侵入性方法可以通过提供MEG癫痫发作定位和TMS雄辩皮层映射的有用信息来帮助优化RNS放置。回顾性图表回顾确定了9例接受RNS放置的患者(平均年龄=20.4岁[SD=5.6],三分之二是女性)。在9名患者中,有8名患者使用MEG对刺激区进行了表征。在所有患者中尝试了相关雄辩皮层的非侵入性绘图。9名患者中有8名TMS成功,6例患者中有2例MEG成功.重要的是,使用非侵入性方法绘制的患者在最近一次门诊就诊时平均癫痫发作减少了77%,与进行侵入性评估的患者相比,癫痫发作减少了75%,指示适当的RNS放置。这些数据表明,TMS和MEG可以为RNS提供关键信息,并且可能是侵入性方法的可行替代方案,用于辅助有关RNS放置的决策。当来自多个非侵入性模态的数据收敛时,用于确定RNS放置的非侵入性方法具有高成功率,并且可以在RNS放置之前通知颅内电极的更准确放置或减轻它们的需要。
    Responsive neurostimulation (RNS) is a treatment option for patients with refractory epilepsy when surgical resection is not possible due to overlap of the irritative zone and eloquent cortex. Presurgical evaluations for RNS placement typically rely on invasive methods. This study investigated the potential of transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) to provide key presurgical information non-invasively. We hypothesized that these non-invasive methods may assist in optimizing RNS placement by providing useful information for seizure localization by MEG and eloquent cortex mapping by TMS. A retrospective chart review identified nine patients who underwent RNS placement (mean age = 20.4 years [SD = 5.6], two-thirds were female). Characterization of the irritative zone using MEG was successful in eight of nine patients. Non-invasive mapping of relevant eloquent cortex was attempted in all patients. TMS was successful in eight of nine patients, and MEG was successful in two of six patients. Importantly, patients mapped with non-invasive modalities experienced an average seizure reduction of 77 % at their most recent clinic visit, compared to 75 % seizure reduction in those with invasive evaluations, indicating appropriate RNS placement. These data demonstrate that TMS and MEG can provide key information for RNS and may be feasible alternatives to invasive methods for assisting in decision making regarding RNS placement. Non-invasive methods for determining RNS placement have a high rate of success when data from multiple non-invasive modalities converge and can inform more accurate placement of intracranial electrodes prior to RNS placement or mitigate their need.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经生理信号,由两者组成(例如,振荡)和非周期性(例如,非振荡)活动,在童年和成年之间经历复杂的发育变化。由于许多现有文献主要集中在脑功能的周期性特征上,我们对非周期性信号的理解仍处于起步阶段。这里,我们是第一个使用光泵浦磁力计(OPM)检查与年龄相关的周期性(峰值频率和功率)和非周期性(斜率和偏移)活动的变化,一个新的,可穿戴脑磁图(MEG)技术,特别适合研究发展。我们检查了幼儿(1-3岁)样本(N=65)中这些光谱特征的年龄相关变化,儿童(4-5岁),年轻人(20-26岁),成人(27-38岁)。与现有文献一致,我们发现非周期性斜率和偏移量显著与年龄相关的下降,以及峰值频率和功率的变化是频率特定的;我们是第一个表明这些变化的影响大小也在不同的大脑区域。这项工作不仅增加了越来越多的工作,突出了使用OPM的优势,特别是研究发展,而且还提供了有关大脑中神经生理变化随年龄变化的新信息。
    Neurophysiological signals, comprised of both periodic (e.g., oscillatory) and aperiodic (e.g., non-oscillatory) activity, undergo complex developmental changes between childhood and adulthood. With much of the existing literature primarily focused on the periodic features of brain function, our understanding of aperiodic signals is still in its infancy. Here, we are the first to examine age-related changes in periodic (peak frequency and power) and aperiodic (slope and offset) activity using optically pumped magnetometers (OPMs), a new, wearable magnetoencephalography (MEG) technology that is particularly well-suited for studying development. We examined age-related changes in these spectral features in a sample (N=65) of toddlers (1-3 years), children (4-5 years), young adults (20-26 years), and adults (27-38 years). Consistent with the extant literature, we found significant age-related decreases in the aperiodic slope and offset, and changes in peak frequency and power that were frequency-specific; we are the first to show that the effect sizes of these changes also varied across brain regions. This work not only adds to the growing body of work highlighting the advantages of using OPMs, especially for studying development, but also contributes novel information regarding the variation of neurophysiological changes with age across the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    微状态是通过脑电图(EEG)测量的大脑活动的瞬时头皮构型。微态分析在脑磁图(MEG)数据中的应用仍然具有挑战性。在一个MEG数据集(N=113)中,我们的目标是识别静止时的MEG微状态,探索他们的大脑来源,并将它们与睁眼(ROE)或闭眼静息状态(RCE)和听觉失配否定(MMN)任务期间大脑活动的变化联系起来。在另一个同时记录的EEG-MEG数据集(N=21)中,我们调查了MEG和EEG微状态之间的关联。六个MEG微状态(mMS)提供了静息状态活动的最佳聚类,每个都与不同的脑源相关:mMS1-2:左/右枕顶;mMS3:前颞叶;mMS4:中央内侧;mMS5-6:左/右额顶叶。RCE中枕骨α功率相对于ROE的增加与更大的mMS1-2时间覆盖相关(τbs<0.20,ps>.002),而MMN中偏差检测的偏侧化与mMS5-6时间覆盖相关(τbs<0.16,ps>.012)。脑电图和脑电图微状态之间没有时间相关性(ps>.05),尽管脑源有一些重叠,并且mMS2-3和EEG微状态B-C之间存在全局解释差异(rs>0.60,ps<.002)。因此,MEG信号可以分解成微状态,但是mMS大脑活动聚类捕获的现象不同于EEG微观状态。源重建和与任务相关的调制将mMS链接到大型网络和本地化活动。因此,MSs提供对大脑动力学和特定任务过程的见解,补充脑电图的微观状态,研究生理和功能失调的大脑活动。
    Microstates are transient scalp configurations of brain activity measured by electroencephalography (EEG). The application of microstate analysis in magnetoencephalography (MEG) data remains challenging. In one MEG dataset (N = 113), we aimed to identify MEG microstates at rest, explore their brain sources, and relate them to changes in brain activity during open-eyes (ROE) or closed-eyes resting state (RCE) and an auditory Mismatch Negativity (MMN) task. In another dataset of simultaneously recorded EEG-MEG data (N = 21), we investigated the association between MEG and EEG microstates. Six MEG microstates (mMS) provided the best clustering of resting-state activity, each linked to different brain sources: mMS 1-2: left/right occipito-parietal; mMS 3: fronto-temporal; mMS 4: centro-medial; mMS 5-6: left/right fronto-parietal. Increases in occipital alpha power in RCE relative to ROE correlated with greater mMS 1-2 time coverage (τbs < 0.20, ps > .002), while the lateralization of deviance detection in MMN was associated with mMS 5-6 time coverage (τbs < 0.16, ps > .012). No temporal correlation was found between EEG and MEG microstates (ps > .05), despite some overlap in brain sources and global explained variance between mMS 2-3 and EEG microstates B-C (rs > 0.60, ps < .002). Hence, the MEG signal can be decomposed into microstates, but mMS brain activity clustering captures phenomena different from EEG microstates. Source reconstruction and task-related modulations link mMS to large-scale networks and localized activities. Thus, mMSs offer insights into brain dynamics and task-specific processes, complementing EEG microstates in studying physiological and dysfunctional brain activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    音乐是一种非语言的人类语言,建立在逻辑上,层次结构,这为探索大脑如何处理复杂的时空听觉序列提供了极好的机会。利用脑磁图的高时间分辨率,我们调查了70名参与者在识别先前记忆的音乐序列过程中,与熵和信息内容匹配的新序列相比,他们的大脑动力学展开。对全脑活动和功能连通性的测量揭示了一个广泛的大脑网络,其基础是识别记忆的听觉序列,包括初级听觉皮层,颞上回,脑岛,额叶盖骨,扣带回,眶额叶皮质,基底神经节,丘脑,和海马体。此外,而听觉皮层主要对序列的第一个音调做出反应,高阶大脑区域的活动,如扣带回,额叶盖骨,海马体,在识别记忆和新颖的音乐序列期间,随着时间的推移,眶额叶皮层大大增加。总之,使用广泛的分析技术,从解码到功能连接,并建立在以前的作品,我们的研究为有意识地识别听觉序列的时空全脑机制提供了新的见解.
    Music is a non-verbal human language, built on logical, hierarchical structures, that offers excellent opportunities to explore how the brain processes complex spatiotemporal auditory sequences. Using the high temporal resolution of magnetoencephalography, we investigated the unfolding brain dynamics of 70 participants during the recognition of previously memorized musical sequences compared to novel sequences matched in terms of entropy and information content. Measures of both whole-brain activity and functional connectivity revealed a widespread brain network underlying the recognition of the memorized auditory sequences, which comprised primary auditory cortex, superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex, basal ganglia, thalamus, and hippocampus. Furthermore, while the auditory cortex responded mainly to the first tones of the sequences, the activity of higher-order brain areas such as the cingulate gyrus, frontal operculum, hippocampus, and orbitofrontal cortex largely increased over time during the recognition of the memorized versus novel musical sequences. In conclusion, using a wide range of analytical techniques spanning from decoding to functional connectivity and building on previous works, our study provided new insights into the spatiotemporal whole-brain mechanisms for conscious recognition of auditory sequences.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号