lipid nanoparticles

脂质纳米粒
  • 文章类型: Journal Article
    聚集的定期穿插短回文重复序列(CRISPR)/CRISPR相关蛋白9(Cas9)技术彻底改变了基因治疗领域,因为它以前所未有的准确性和效率实现了精确的基因组编辑。为治疗无法治愈的遗传疾病的临床应用铺平了道路。通常,精确的基因组编辑需要将多种成分传递给靶细胞,根据使用的编辑平台,可能包括信使RNA(mRNA),蛋白质复合物,和DNA片段。为了临床目的,这些必须有效地传递到可移植的细胞中,例如通常对外源物质敏感的原代T淋巴细胞或造血干细胞和祖细胞。这种挑战已将精确基因治疗应用的广泛适用性限制在可获得有效递送方法的那些策略上。基于电穿孔的方法已普遍应用于基因编辑应用,但与程序相关的毒性是一个主要负担。随着新型和破坏性较小的方法的出现,将遗传货物运送到可移植的细胞,现在可以安全有效地提供多种成分进行精确的基因组编辑,从而扩大了这些策略的适用性。在这次审查中,我们描述了可用于基因组编辑组件的不同递送系统,包括病毒和非病毒系统,突出他们的优势,局限性,和最近的临床应用。最近对这些递送方法的改进以实现细胞特异性代表了一个关键的发展,该发展可能在将来实现体内靶向,并且肯定会在基因治疗领域发挥关键作用。
    Clustered regularly interspersed short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has revolutionized the field of gene therapy as it has enabled precise genome editing with unprecedented accuracy and efficiency, paving the way for clinical applications to treat otherwise incurable genetic disorders. Typically, precise genome editing requires the delivery of multiple components to the target cells that, depending on the editing platform used, may include messenger RNA (mRNA), protein complexes, and DNA fragments. For clinical purposes, these have to be efficiently delivered into transplantable cells, such as primary T lymphocytes or hematopoietic stem and progenitor cells that are typically sensitive to exogenous substances. This challenge has limited the broad applicability of precise gene therapy applications to those strategies for which efficient delivery methods are available. Electroporation-based methodologies have been generally applied for gene editing applications, but procedure-associated toxicity has represented a major burden. With the advent of novel and less disruptive methodologies to deliver genetic cargo to transplantable cells, it is now possible to safely and efficiently deliver multiple components for precise genome editing, thus expanding the applicability of these strategies. In this review, we describe the different delivery systems available for genome editing components, including viral and non-viral systems, highlighting their advantages, limitations, and recent clinical applications. Recent improvements to these delivery methods to achieve cell specificity represent a critical development that may enable in vivo targeting in the future and will certainly play a pivotal role in the gene therapy field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于RNA的疗法,包括siRNA,近年来,由于其治疗各种慢性和罕见疾病的潜力而获得了认可。然而,由于需要优化设计和制备过程,基于脂质的药物递送系统在RNA治疗剂的临床应用中仍然存在局限性.在这项研究中,我们提出了自适应聚焦超声(AFU)作为一种药物装载技术,通过将小RNA封装在纳米脂质体中来保护RNA免受降解,我们称之为纳米复合物。AFU方法是非侵入性和等温的,如纳米复合物在不与任何外部材料直接接触的情况下生产,同时根据所需的设置保持精确的温度控制。可以有效调节样品处理的可控性,允许广泛的超声强度的应用。重要的是,在该过程中不存在共溶剂消除了对额外物质的需要,从而最大限度地减少交叉污染的可能性。由于AFU是一种非侵入性方法,整个过程可以在无菌条件下进行。此过程需要最小体积(300μL),并且治疗迅速(在本研究中为10分钟)。我们用沉默子CD44siRNA进行的体外实验,在不同的哺乳动物细胞系中作为模型治疗药物,显示出令人鼓舞的结果(击倒>80%)。为了量化基因沉默的功效,我们采用定量聚合酶链反应(qPCR)。此外,采用低温电子显微镜(cryo-EM)和原子力显微镜(AFM)技术捕获纳米复合物的图像。这些图像揭示了测量约100-200nm的单个纳米颗粒的存在,与在脂质体纳米颗粒和siRNA的超声未处理样品中观察到的成簇复合物的随机分布形成对比。AFU具有作为一种标准化的脂质体加工和装载方法的巨大潜力,因为它的过程是快速的,无菌,并且不需要额外的溶剂。
    RNA-based therapeutics, including siRNA, have obtained recognition in recent years due to their potential to treat various chronic and rare diseases. However, there are still limitations to lipid-based drug delivery systems in the clinical use of RNA therapeutics due to the need for optimization in the design and the preparation process. In this study, we propose adaptive focused ultrasound (AFU) as a drug loading technique to protect RNA from degradation by encapsulating small RNA in nanoliposomes, which we term nanoplexes. The AFU method is non-invasive and isothermal, as nanoplexes are produced without direct contact with any external materials while maintaining precise temperature control according to the desired settings. The controllability of sample treatments can be effectively modulated, allowing for a wide range of ultrasound intensities to be applied. Importantly, the absence of co-solvents in the process eliminates the need for additional substances, thereby minimizing the potential for cross-contaminations. Since AFU is a non-invasive method, the entire process can be conducted under sterile conditions. A minimal volume (300 μL) is required for this process, and the treatment is speedy (10 min in this study). Our in vitro experiments with silencer CD44 siRNA, which performs as a model therapeutic drug in different mammalian cell lines, showed encouraging results (knockdown > 80%). To quantify gene silencing efficacy, we employed quantitative polymerase chain reaction (qPCR). Additionally, cryo-electron microscopy (cryo-EM) and atomic force microscopy (AFM) techniques were employed to capture images of nanoplexes. These images revealed the presence of individual nanoparticles measuring approximately 100-200 nm in contrast with the random distribution of clustered complexes observed in ultrasound-untreated samples of liposome nanoparticles and siRNA. AFU holds great potential as a standardized liposome processing and loading method because its process is fast, sterile, and does not require additional solvents.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    癌症疫苗旨在产生杀死癌细胞并赋予持久肿瘤消退的细胞毒性CD8+T细胞。在此,CD8+肽表位应由抗原呈递细胞呈递至淋巴组织中的CD8+T细胞。不幸的是,以未配制的可溶形式,肽抗原很少被抗原呈递细胞吸收,不能有效地到达淋巴结。因此,缺乏有效的递送仍然是使用肽抗原成功临床转化癌症疫苗的主要限制.在这里,我们提出了一种通用的肽纳米制剂策略,通过用10个谷氨酸残基扩展肽抗原表位的氨基酸序列。所得到的肽的总阴离子电荷允许通过与可电离的阳离子脂质的静电相互作用封装到脂质纳米颗粒(肽-LNP)中。我们证明了肽-LNP的静脉内注射有效地将肽递送至脾脏中的免疫细胞。共包封咪唑喹啉TLR7/8激动剂(IMDQ)的肽-LNP在脾脏中的宽范围的免疫细胞亚群中诱导稳健的先天性免疫活化。含有HPV16型E7癌蛋白和IMDQ的最小CD8+T细胞表位的肽-LNP诱导血液中高水平的抗原特异性CD8+T细胞,并且可以在预防和治疗环境中赋予针对表达E7的肿瘤的保护性免疫。
    Cancer vaccines aim at generating cytotoxic CD8+ T cells that kill cancer cells and confer durable tumor regression. Hereto, CD8+ peptide epitopes should be presented by antigen presenting cells to CD8+ T cells in lymphoid tissue. Unfortunately, in unformulated soluble form, peptide antigens are poorly taken up by antigen presenting cells and do not efficiently reach lymph nodes. Hence, the lack of efficient delivery remains a major limitation for successful clinical translation of cancer vaccination using peptide antigens. Here we propose a generic peptide nanoformulation strategy by extending the amino acid sequence of the peptide antigen epitope with 10 glutamic acid residues. The resulting overall anionic charge of the peptide allows encapsulation into lipid nanoparticles (peptide-LNP) by electrostatic interaction with an ionizable cationic lipid. We demonstrate that intravenous injection of peptide-LNP efficiently delivers the peptide to immune cells in the spleen. Peptide-LNP that co-encapsulate an imidazoquinoline TLR7/8 agonist (IMDQ) induce robust innate immune activation in a broad range of immune cell subsets in the spleen. Peptide-LNP containing the minimal CD8+ T cell epitope of the HPV type 16 E7 oncoprotein and IMDQ induces high levels of antigen-specific CD8+ T cells in the blood, and can confer protective immunity against E7-expressing tumors in both prophylactic and therapeutic settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    原理:NLRP3炎性体在许多由慢性炎症引起的代谢性疾病的发展和进展中至关重要,但是其对绝经后骨质疏松症(PMOP)病理的影响仍然知之甚少。方法:我们首先通过ELISA检测PMOP患者中NLRP3炎性体的水平。然后,我们通过对NLRP3siRNA和qPCR处理的成骨细胞进行RNA测序,研究了NLRP3炎性体对PMOP影响的可能机制。最后,我们研究了NLRP3水平降低对去卵巢(OVX)大鼠的影响.为了将NLRP3siRNA特异性递送至成骨细胞,我们构建了包裹成骨细胞特异性适体(CH6)功能化脂质纳米粒(称为CH6-LNPs-siNLRP3)的NLRP3siRNA。结果:我们发现PMOP患者NLRP3炎性体水平显著升高,与雌二醇水平呈负相关。NLRP3敲低影响信号通路,包括免疫系统过程,干扰素信号通路。值得注意的是,在减少NLRP3的成骨细胞中,9个基因(除Mx2外)在免疫系统过程中被富集,5个基因与干扰素信号通路相关。体外结果表明,CH6-LNPs-siNLRP3相对均匀,读数为96.64±16.83nm,ζ电位为38.37±1.86mV。CH6-LNP-siNLRP3没有显示出明显的细胞毒性,并且选择性地将siRNA递送至骨组织。此外,CH6-LNPs-siNLRP3通过激活ALP和增强成骨细胞基质矿化刺激成骨细胞分化。当给OVX大鼠服用时,CH6-LNPs-siNLRP3促进骨形成和骨量,通过降低NLRP3,IL-1β和IL-18的水平以及增加OCN和Runx2的水平来改善骨骼的微观结构和机械性能。结论:NLRP3炎性体可能是PMOP诊断的新生物标志物,在PMOP的病理过程中起关键作用。CH6-LNPs-siNLRP3在治疗PMOP方面具有潜在的应用价值。
    Rationale: NLRP3 inflammasome is critical in the development and progression of many metabolic diseases driven by chronic inflammation, but its effect on the pathology of postmenopausal osteoporosis (PMOP) remains poorly understood. Methods: We here firstly examined the levels of NLRP3 inflammasome in PMOP patients by ELISA. Then we investigated the possible mechanisms underlying the effect of NLRP3 inflammasome on PMOP by RNA sequencing of osteoblasts treated with NLRP3 siRNA and qPCR. Lastly, we accessed the effect of decreased NLRP3 levels on ovariectomized (OVX) rats. To specifically deliver NLRP3 siRNA to osteoblasts, we constructed NLRP3 siRNA wrapping osteoblast-specific aptamer (CH6)-functionalized lipid nanoparticles (termed as CH6-LNPs-siNLRP3). Results: We found that the levels of NLRP3 inflammasome were significantly increased in patients with PMOP, and were negatively correlated with estradiol levels. NLRP3 knock-down influenced signal pathways including immune system process, interferon signal pathway. Notably, of the top ten up-regulated genes in NLRP3-reduced osteoblasts, nine genes (except Mx2) were enriched in immune system process, and five genes were related to interferon signal pathway. The in vitro results showed that CH6-LNPs-siNLRP3 was relatively uniform with a dimeter of 96.64 ± 16.83 nm and zeta potential of 38.37 ± 1.86 mV. CH6-LNPs-siNLRP3 did not show obvious cytotoxicity and selectively delivered siRNA to bone tissue. Moreover, CH6-LNPs-siNLRP3 stimulated osteoblast differentiation by activating ALP and enhancing osteoblast matrix mineralization. When administrated to OVX rats, CH6-LNPs-siNLRP3 promoted bone formation and bone mass, improved bone microarchitecture and mechanical properties by decreasing the levels of NLRP3, IL-1β and IL-18 and increasing the levels of OCN and Runx2. Conclusion: NLRP3 inflammasome may be a new biomarker for PMOP diagnosis and plays a key role in the pathology of PMOP. CH6-LNPs-siNLRP3 has potential application for the treatment of PMOP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂质纳米颗粒(LNP)的开发使得基于小干扰核糖核酸(siRNA)的疗法能够临床应用。因此,已经探索了各种独特的可电离脂质用于有效的siRNA递送。然而,与可电离脂质结构相关的安全问题已经被提出。这里,我们开发了一种pH响应性二肽偶联脂质(DPL),高安全性的siRNA输送。我们通过改变二肽序列合成了DPL文库,并在基于DPL的LNP的敲低效率和二肽序列之间建立了强相关性。用含有精氨酸(R)和谷氨酸(E)(DPL-ER)的DPL制备的LNP表现出最高的敲低效率。此外,具有相对较长脂质尾的基于DPL-ER的LNP(DPL-ER-C22:C22)比具有较短脂质尾的LNP(DPL-ER-18:C18)表现出更高的敲低效率。基于DPL-ER-C22:C22的LNP的ζ电位随着pH从7.4(生理条件)降低至5.5(内体条件)而增加。重要的是,基于DPL-ER-C22:C22的LNP表现出比使用市售可电离脂质制备的LNP更高的敲低效率。这些结果表明基于DPL的LNP是安全且有效的siRNA递送载体。
    The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    结直肠癌(CRC)是一种常见的胃肠道(GIT)癌症,对人类健康构成巨大威胁。目前转移性结直肠癌(mCRC)治疗策略主要集中在化疗,靶向治疗,免疫疗法,和放射治疗;然而,其不良反应和耐药性限制了其临床应用。纳米技术的进步使脂质纳米颗粒(LNP)成为一种有前途的基于纳米材料的CRC治疗药物递送系统。LNPs可以通过修改其配方来适应CRC的生物学特性,能够选择性地将药物输送到癌症组织。他们克服了传统疗法的局限性,如水溶性差,非特异性生物分布,和有限的生物利用度。在这里,我们综述了用于CRC治疗的LNP的组成和靶向策略.随后,这些纳米颗粒在CRC治疗中的应用,包括药物递送,热疗,总结了基于核酸的基因治疗,并提供了实例。最后一部分提供了对优点的一瞥,电流限制,以及LNPs在CRC治疗中的前景。
    Colorectal cancer (CRC) is a common type of gastrointestinal tract (GIT) cancer and poses an enormous threat to human health. Current strategies for metastatic colorectal cancer (mCRC) therapy primarily focus on chemotherapy, targeted therapy, immunotherapy, and radiotherapy; however, their adverse reactions and drug resistance limit their clinical application. Advances in nanotechnology have rendered lipid nanoparticles (LNPs) a promising nanomaterial-based drug delivery system for CRC therapy. LNPs can adapt to the biological characteristics of CRC by modifying their formulation, enabling the selective delivery of drugs to cancer tissues. They overcome the limitations of traditional therapies, such as poor water solubility, nonspecific biodistribution, and limited bioavailability. Herein, we review the composition and targeting strategies of LNPs for CRC therapy. Subsequently, the applications of these nanoparticles in CRC treatment including drug delivery, thermal therapy, and nucleic acid-based gene therapy are summarized with examples provided. The last section provides a glimpse into the advantages, current limitations, and prospects of LNPs in the treatment of CRC.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    近30年来,基因编辑工具的发展一直是生命科学研究的重要领域。这些工具已广泛用于疾病检测和机制研究。在新世纪,它们在解决各种科学挑战和通过基因编辑疗法拯救生命方面显示出潜力,特别是在对抗心血管疾病(CVD)。基因编辑疗法的快速发展为CVD患者提供了乐观。CVD的基因编辑治疗进展是基因编辑技术在临床和基础研究环境中的实际实施的综合反映。以及心血管疾病研究和治疗的稳步推进。本文概述了迄今为止开发的常用的DNA靶向基因编辑工具,特别关注这些工具的应用,特别是成簇的规则间隔短回文重复/CRISPR相关基因(Cas)(CRISPR/Cas)系统,在CVD基因编辑疗法中。它还深入研究了当前基因编辑疗法的挑战和局限性,同时总结正在进行的与CVD相关的研究和临床试验。目的是通过总结基因编辑工具在CVD领域的成功应用,以促进相关研究人员的进一步探索。
    The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脂质纳米颗粒(LNP)已被证明是基于RNA的疫苗和治疗剂的有前途的递送载体,特别是在含有可电离阳离子脂质的LNP制剂中,所述可电离阳离子脂质响应于缓冲液pH变化而经历质子化/去质子化。这些纳米颗粒通常使用快速混合技术在低pH下配制,然后恢复到触发LNP-LNP融合的生理pH。详细了解这些动态过程对于优化LNP的整体性能和效率至关重要。然而,关于颗粒形成机制如何影响药物负载和递送功能的知识差距仍然存在。在这项工作中,我们采用单分子凸透镜诱导的约束(CLiC)显微镜与Förster共振能量转移(FRET)测量相结合,以研究与各种配方参数相关的LNP融合动力学。包括脂质浓度,缓冲条件,载药率,PEG-脂质浓度,和可电离的脂质选择。我们的结果揭示了所测量的融合动力学与所使用的制剂参数之间的强相关性;这些发现与基于DLS和Cryo-TEM的测定一致。这些测量为表征和筛选潜在候选药物提供了一种具有成本效益的方法,并且可以提供对其设计的更多见解。优化的机会。
    Lipid nanoparticles (LNPs) have proven to be promising delivery vehicles for RNA-based vaccines and therapeutics, particularly in LNP formulations containing ionizable cationic lipids that undergo protonation/deprotonation in response to buffer pH changes. These nanoparticles are typically formulated using a rapid mixing technique at low pH, followed by a return to physiological pH that triggers LNP-LNP fusion. A detailed understanding of these dynamic processes is crucial to optimize the overall performance and efficiency of LNPs. However, knowledge gaps persist regarding how particle formation mechanisms impact drug loading and delivery functions. In this work, we employ single-molecule Convex Lens-induced Confinement (CLiC) microscopy in combination with Förster resonance energy transfer (FRET) measurements to study LNP fusion dynamics in relation to various formulation parameters, including lipid concentration, buffer conditions, drug loading ratio, PEG-lipid concentrations, and ionizable lipid selection. Our results reveal a strong correlation between the measured fusion dynamics and the formulation parameters used; these findings are consistent with DLS and Cryo-TEM-based assays. These measurements offer a cost-effective method for characterizing and screening potential drug candidates and can provide additional insights into their design, with opportunities for optimization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    包封治疗剂或疫苗的脂质纳米颗粒(LNP)的稳健表征是重要且多方面的翻译问题。沉降速度分析超速离心(SV-AUC)已被证明是表征尺寸分布的强大方法,互动,以及大尺寸范围内各种类型的纳米颗粒的组成,包括金属纳米颗粒(NPs),聚合物NP,以及载有核酸的病毒衣壳。对于LNP的表征,可以预期SV-AUC的类似潜力,但由于LNPs的浮选与常见的沉降分析模型不兼容而受到阻碍。为了解决这个差距,我们开发了高分辨率,扩散-去卷积沉降/浮选分布分析方法类似于最广泛使用的沉降分析模型c(s)。该方法利用了平均粒径或扩散系数的独立测量,可以方便地确定,例如,通过动态光散射(DLS)。我们展示了挤出脂质体的实验模型以及商业LNP产品的应用,并讨论了SV-AUC的实验潜力和局限性。该方法类似于自由沉降模型,广泛使用SEDFIT软件。
    The robust characterization of lipid nanoparticles (LNPs) encapsulating therapeutics or vaccines is an important and multifaceted translational problem. Sedimentation velocity analytical ultracentrifugation (SV-AUC) has proven to be a powerful approach in the characterization of size-distribution, interactions, and composition of various types of nanoparticles across a large size range, including metal nanoparticles (NPs), polymeric NPs, and also nucleic acid loaded viral capsids. Similar potential of SV-AUC can be expected for the characterization of LNPs, but is hindered by the flotation of LNPs being incompatible with common sedimentation analysis models. To address this gap, we developed a high-resolution, diffusion-deconvoluted sedimentation/flotation distribution analysis approach analogous to the most widely used sedimentation analysis model c(s). The approach takes advantage of independent measurements of the average particle size or diffusion coefficient, which can be conveniently determined, for example, by dynamic light scattering (DLS). We demonstrate the application to an experimental model of extruded liposomes as well as a commercial LNP product and discuss experimental potential and limitations of SV-AUC. The method is implemented analogously to the sedimentation models in the free, widely used SEDFIT software.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    mRNA疗法已显示出用于广谱疾病治疗的巨大潜力。然而,mRNA固有的不稳定性和细胞进入困难的挑战阻碍了其在生物医学领域的进展。为了解决细胞屏障并将mRNA递送到感兴趣的细胞,各种交付系统的设计。其中,脂质纳米颗粒(LNPs)是最广泛使用的mRNA递送系统,特别是在冠状病毒病2019(COVID-19)mRNA疫苗的临床批准之后。LNP由可电离的阳离子脂质组成,磷脂,胆固醇,和聚乙二醇衍生的脂质(PEG-脂质)。在这次审查中,我们主要总结了LNPmRNA递送技术的最新进展,重点介绍了四种脂质成分的结构及其生物医学应用。我们深入研究了脂质的结构-活性关系,同时还探索了开发更有效的mRNA递送系统的未来前景和挑战。本文分为:治疗方法和药物发现>新兴技术生物学启发的纳米材料>基于脂质的结构纳米技术生物学方法>生物学中的纳米级系统。
    mRNA therapeutics have shown great potential for a broad spectrum of disease treatment. However, the challenges of mRNA\'s inherent instability and difficulty in cellular entry have hindered its progress in the biomedical field. To address the cellular barriers and deliver mRNA to cells of interest, various delivery systems are designed. Among these, lipid nanoparticles (LNPs) stand out as the most extensively used mRNA delivery systems, particularly following the clinical approvals of corona virus disease 2019 (COVID-19) mRNA vaccines. LNPs are comprised of ionizable cationic lipids, phospholipids, cholesterol, and polyethylene glycol derived lipids (PEG-lipids). In this review, we primarily summarize the recent advancements of the LNP mRNA delivery technology, focusing on the structures of four lipid constituents and their biomedical applications. We delve into structure-activity relationships of the lipids, while also exploring the future prospects and challenges in developing more efficacious mRNA delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号