kinesin

驱动蛋白
  • 文章类型: Journal Article
    微管-驱动蛋白生物分子运动系统,这对细胞功能至关重要,对纳米技术的应用具有重要的前景。体外滑动测定已证明了通过推动微管穿过驱动蛋白包被的表面来运输微货物的能力。然而,微管的不受控制的定向运动提出了重大挑战,限制了系统在精确货物交付方面的应用。微流体装置提供了一种通过其几何特征引导微管运动的手段。Norland光学粘合剂(NOA)因其在微流体设备制造中的无模具应用而受到重视;但是,微管经常爬上通道壁,限制受控运动。在这项研究中,介绍了NOA的表面钝化方法,使用聚乙二醇通过硫醇-烯点击反应。该技术显着改善了NOA微通道内微管的定向控制和浓度。这种方法为纳米技术中生物分子马达的精确应用提供了新的可能性,使复杂的生物分子操作的微流体系统的设计进步。
    The microtubule-kinesin biomolecular motor system, which is vital for cellular function, holds significant promise for nanotechnological applications. In vitro gliding assays have demonstrated the ability to transport microcargo by propelling microtubules across kinesin-coated surfaces. However, the uncontrolled directional motion of microtubules has posed significant challenges, limiting the system\'s application for precise cargo delivery. Microfluidic devices provide a means to direct microtubule movement through their geometric features. Norland Optical Adhesive (NOA) is valued for its mold-free application in microfluidic device fabrication; however, microtubules often climb up channel walls, limiting controlled movement. In this study, a surface passivation method for NOA is introduced, using polyethylene glycol via a thiol-ene click reaction. This technique significantly improved the directional control and concentration of microtubules within NOA microchannels. This approach presents new possibilities for the precise application of biomolecular motors in nanotechnology, enabling advancements in the design of microfluidic systems for complex biomolecular manipulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    天然驱动蛋白马达通过短的C端或N端接头拴在货物上,其与核心电机域的对接会产生定向力。目前尚不清楚链接器对接是否是唯一贡献定向力的过程,或者链接器对接是否耦合并放大底层,驱动蛋白运动域的更基本的力产生机械循环。这里,我们表明,通过连接到表面环的双链DNA(dsDNA)连接的驱动蛋白运动结构域驱动强大的微管(MT)滑动。使用连接至表面环的dsDNA的系链断开C末端颈部接头和N末端覆盖链,使得它们的对接-分离循环不能施加力。dsDNA系链最有效的连接位置是环2或环10,它们最接近MT的正端和负端,分别。在三种情况下,我们观察到负向运动。我们的研究结果表明,潜在的古老,驱动蛋白运动域的力产生核心机械作用,它驱动着,并被放大,链接器对接。
    Natural kinesin motors are tethered to their cargoes via short C-terminal or N-terminal linkers, whose docking against the core motor domain generates directional force. It remains unclear whether linker docking is the only process contributing directional force or whether linker docking is coupled to and amplifies an underlying, more fundamental force-generating mechanical cycle of the kinesin motor domain. Here, we show that kinesin motor domains tethered via double-stranded DNAs (dsDNAs) attached to surface loops drive robust microtubule (MT) gliding. Tethering using dsDNA attached to surface loops disconnects the C-terminal neck-linker and the N-terminal cover strand so that their dock-undock cycle cannot exert force. The most effective attachment positions for the dsDNA tether are loop 2 or loop 10, which lie closest to the MT plus and minus ends, respectively. In three cases, we observed minus-end-directed motility. Our findings demonstrate an underlying, potentially ancient, force-generating core mechanical action of the kinesin motor domain, which drives, and is amplified by, linker docking.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞骨架运动蛋白是生物纳米机器,将化学能转化为机械功,以执行各种功能,例如细胞分裂,细胞运动性,货物运输,肌肉收缩,纤毛和鞭毛的跳动,和纤毛生成。这些过程中的大多数是由拥挤的粘性细胞内环境中的几个电机的集体操作驱动的。具有强大实验探针的电动机的成像和操纵已通过数学分析和相应理论模型的计算机模拟得到了补充。在这篇文章中,我们说明了一些用于理解协调的关键理论方法,在拥挤的细胞内环境中,多个电机的合作和竞争驱动着细胞生物学功能必不可少的过程。尽管专注于理论,实验家也会发现这篇文章作为一个有用的总结,在理解多电机系统到目前为止所取得的进展。
    Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    胶质细胞通过分泌可溶性因子为神经元和神经组织的细胞外区室提供物理和化学支持和保护。不溶性支架,和囊泡。此外,神经胶质细胞通过重塑其物理微环境和改变其附近不同细胞类型的生理特性而具有再生能力。各种类型的异常胶质细胞和巨噬细胞与人类疾病有关,障碍,和恶性肿瘤。我们以前证明了跨膜蛋白,TMEM230通过分泌促血管生成因子和金属蛋白酶而具有组织血运重建和再生能力,诱导内皮细胞发芽和通道形成。在健康的正常神经组织中,TMEM230主要表达于神经胶质细胞和细胞中,提示在神经组织稳态中的重要作用。通过与RNASET2共表达支持TMEM230对内膜系统的调节(溶酶体,线粒体,和囊泡)和STEAP家族成员(高尔基复合体)。胶质细胞成分的细胞内运输和细胞外分泌与内吞作用有关,运动蛋白介导的胞吐和吞噬作用。贩运成分包括金属蛋白,金属蛋白酶,聚糖,和糖缀合物加工和消化酶,在吞噬体和囊泡中发挥作用,以调节正常的神经组织微环境,稳态,应激反应,以及神经组织损伤或变性后的修复。异常高持续水平TMEM230促进金属蛋白表达,运输和分泌有助于高肿瘤级别神经胶质瘤的肿瘤相关浸润和血管过度形成。中枢神经或外周系统损伤后,TMEM230超常调节的上调促进组织伤口愈合,通过激活神经胶质和巨噬细胞产生的微通道/微管(称为血管模仿)和血管发芽和分支来进行重塑和血运重建。我们的结果支持TMEM230可能充当神经胶质瘤和神经胶质增生中一大类金属蛋白的运输和区室化的运动蛋白的主要调节因子。
    Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    驱动蛋白是真核微管运动蛋白,细分为具有不同功能作用的保守家族。虽然许多驱动蛋白家族在真核生物中普遍存在,每个生物谱系都保持着一个独特的驱动蛋白库,由许多具有不同数量基因的家族组成。先前的基因组研究表明,陆地植物驱动蛋白库与其他真核生物明显不同。为了确定植物进化过程中库存物何时发散,我们在24个代表性植物中对驱动蛋白进行了强大的系统发育分析,两种藻类,两只动物,和一个酵母。这些分析表明,驱动蛋白库的扩展和收缩与藻类和陆地植物生物学的重大变化相吻合。一个驱动蛋白家族和五个亚家族,每个都由独特的域架构定义,出现在绿藻中。其中四个驱动蛋白群体在现代陆地植物的祖先中扩展,而其他六个驱动蛋白组则在带有花粉的植物的祖先中丢失。苔藓和被子植物谱系中发生了不同的驱动蛋白家族和亚家族的扩展。其他驱动蛋白家族保持稳定,并且在整个植物进化过程中没有扩展。总的来说,这些数据支持藻类中驱动蛋白结构域结构的辐射,然后对陆地植物不同谱系中的驱动蛋白家族和亚家族进行不同的正选择和负选择。
    Kinesins are eukaryotic microtubule motor proteins subdivided into conserved families with distinct functional roles. While many kinesin families are widespread in eukaryotes, each organismal lineage maintains a unique kinesin repertoire composed of many families with distinct numbers of genes. Previous genomic surveys indicated that land plant kinesin repertoires differ markedly from other eukaryotes. To determine when repertoires diverged during plant evolution, we performed robust phylogenomic analyses of kinesins in 24 representative plants, two algae, two animals, and one yeast. These analyses show that kinesin repertoires expand and contract coincident with major shifts in the biology of algae and land plants. One kinesin family and five subfamilies, each defined by unique domain architectures, emerged in the green algae. Four of those kinesin groups expanded in ancestors of modern land plants, while six other kinesin groups were lost in the ancestors of pollen-bearing plants. Expansions of different kinesin families and subfamilies occurred in moss and angiosperm lineages. Other kinesin families remained stable and did not expand throughout plant evolution. Collectively these data support a radiation of kinesin domain architectures in algae followed by differential positive and negative selection on kinesins families and subfamilies in different lineages of land plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在细胞中,mRNA被转运并定位在亚细胞区域以局部调节蛋白质产生。最近的研究已经确定驱动蛋白-3家族成员运动蛋白KIF1C为RNA转运蛋白。然而,目前尚不清楚KIF1C如何与RNA分子相互作用。这里,我们表明KIF1CC末端尾部结构域包含驱动液-液相分离(LLPS)的固有无序区域(IDR)。KIF1C在细胞中形成动态点,显示液体缩合物的物理性质,并以序列选择性方式掺入RNA分子。内源性KIF1C在细胞突起中形成凝聚物,其中mRNA以IDR依赖性方式富集。纯化的KIF1C尾部构建体在接近内源性nM浓度且不存在拥挤剂的情况下在体外经历LLPS,并且可以直接募集RNA分子。总的来说,我们的工作揭示了KIF1C的LLPS活性与其在mRNA定位中的作用之间的内在相关性。此外,KIF1C尾部的LLPS活性代表了一种新的运动-货物相互作用模式,扩展了我们目前对细胞骨架运动蛋白的理解。
    In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C\'s tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rab4GTP酶组织内体分选对于维持再循环和降解途径之间的平衡至关重要。Rab4定位于许多货物,其在神经元中的运输对于调节神经传递和神经元健康至关重要。此外,中枢神经系统中Rab4水平升高与果蝇和人类的突触萎缩和神经变性有关,分别。然而,Rab4相关囊泡在神经元中的转运是如何被调节的仍然是未知的。使用果蝇幼虫的体内延时成像,我们显示通过Dilp2和dInR激活胰岛素信号会增加顺行速度,运行长度,和Rab4囊泡在轴突中的通量。分子上,我们显示神经元胰岛素信号的激活进一步激活Vps34,升高Rab4相关囊泡上PI(3)P的水平,招募Klp98A(PI(3)P结合驱动蛋白3运动)并激活其顺行运输。一起,这些观察描述了胰岛素信号在调节轴突运输和突触稳态中的作用.
    Dilp2介导的胰岛素信号激活Rab4vesiclesVps34的顺行转运调节顺行速度,Rab4囊泡的运行长度和通量Rab4囊泡上的局部PI(3)P信号调节其在急性胰岛素刺激下在Rab4囊泡上招募Klp98A的轴突PI(3)P产生中的运动性。
    Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于微管的驱动蛋白运动蛋白对于细胞内运输至关重要,但是它们的过度激活可能对细胞功能有害。这项研究调查了组成型活性纤毛驱动蛋白突变体的影响,OSM-3CA,秀丽隐杆线虫的感觉纤毛。令人惊讶的是,我们发现纤毛中没有OSM-3CA,但通过异常神经突尖端的膜脱落进行了处置。邻近的神经胶质细胞吞噬并消除释放的OSM-3CA,一个依赖于吞噬受体CED-1的过程。通过基因抑制筛选,我们鉴定了OSM-3CA运动结构域的基因内突变和抑制纤毛激酶DYF-5的突变,这两种突变在表达OSM-3CA的动物中恢复正常纤毛.我们发现OSM-3CA的构象变化阻止其进入纤毛,OSM-3CA处置需要其多动症。最后,我们提供的证据表明,神经元也处理过度活跃的驱动蛋白-1由与肌萎缩侧索硬化症相关的临床变异产生,提示了调节过度活跃驱动蛋白的广泛机制。
    Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞异常增殖是肿瘤细胞的主要特征之一,可受许多细胞进程和信号通路的影响。驱动蛋白超家族蛋白(KIF)是在细胞增殖过程中参与细胞质运输和染色体分离的运动蛋白。因此,调节KIF作为染色体稳定性的重要因子是维持正常细胞稳态和增殖所必需的。已经在各种癌症中报道了KIF放松管制。微小RNA(miRNA)和信号通路是KIF蛋白的重要调节因子。miRNAs在细胞增殖调控中发挥关键作用,迁移,和凋亡。在本次审查中,我们讨论了miRNAs通过调节KIF蛋白在肿瘤生物学中的作用。已经显示miRNA主要通过KIF靶向具有肿瘤抑制功能。这篇综述可能是在肿瘤细胞中引入miRNAs/KIFs轴作为可能的治疗靶标的有效步骤。
    Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    嗜神经甲疱疹病毒,包括单纯疱疹病毒1型(HSV-1),招募微管运动蛋白侵入细胞。进入的病毒颗粒以两步的方式流向细胞核。首先,粒子使用动力蛋白-动力蛋白马达来维持向中心体的运输。在神经元中,这一步负责长距离逆行轴突运输,是这些病毒共有的神经侵入特性的重要组成部分。第二,驱动蛋白依赖机制将粒子从中心体重定向到细胞核。我们已经报道,在上一轮感染期间,在入侵的第二步中使用的驱动蛋白马达被吸收为新生的病毒体。这里,我们报告说,HSV-1pUL37外皮蛋白在逆行轴突运输过程中抑制同化的驱动蛋白-1运动。pUL37的区域2(R2)是抑制所必需的,并且独立于驱动蛋白1天然的自动抑制机制起作用。此外,驱动蛋白-1的运动区和近端卷曲螺旋足以同化HSV-1,pUL37抑制,核贩运。pUL37位于中心体,感染过程中同化驱动蛋白-1激活的部位,当在不存在其他病毒蛋白的细胞中表达时;然而,在这种情况下,pUL37不抑制驱动蛋白-1。这些结果表明,在进入的病毒颗粒的情况下,pUL37外皮蛋白通过氨基末端运动区在空间和时间上调节驱动蛋白1。
    Neurotropic alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), recruit microtubule motor proteins to invade cells. The incoming viral particle traffics to nuclei in a two-step process. First, the particle uses the dynein-dynactin motor to sustain transport to the centrosome. In neurons, this step is responsible for long-distance retrograde axonal transport and is an important component of the neuroinvasive property shared by these viruses. Second, a kinesin-dependent mechanism redirects the particle from the centrosome to the nucleus. We have reported that the kinesin motor used during the second step of invasion is assimilated into nascent virions during the previous round of infection. Here, we report that the HSV-1 pUL37 tegument protein suppresses the assimilated kinesin-1 motor during retrograde axonal transport. Region 2 (R2) of pUL37 was required for suppression and functioned independently of the autoinhibitory mechanism native to kinesin-1. Furthermore, the motor domain and proximal coiled coil of kinesin-1 were sufficient for HSV-1 assimilation, pUL37 suppression, and nuclear trafficking. pUL37 localized to the centrosome, the site of assimilated kinesin-1 activation during infection, when expressed in cells in the absence of other viral proteins; however, pUL37 did not suppress kinesin-1 in this context. These results indicate that the pUL37 tegument protein spatially and temporally regulates kinesin-1 via the amino-terminal motor region in the context of the incoming viral particle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号