isoxaben

  • 文章类型: Journal Article
    isoxaben是一种发芽前除草剂,用于控制阔叶杂草。虽然植物毒性机制尚未完全了解,异羟苯干扰纤维素合成。纤维素合酶复合物蛋白中的某些突变可以赋予异羟苯耐受性;然而,这些突变会导致纤维素合成受损和植物生长紊乱,使它们不适合作为除草剂耐受性性状。通过筛选拟南芥T-DNA突变体,我们进行了遗传筛选,以鉴定与异草酚耐受性相关的新基因。我们发现FERREDOXIN-NADP(+)氧化还原酶样(FNRL)基因的突变增强了对异恶沙芬的耐受性,表现为主根发育迟缓的减少,活性氧积累和异位木质化。fnrl突变体在暴露于isoxaben后没有表现出纤维素水平的降低,表明FNRL在异氧苯诱导的纤维素抑制的上游起作用。根据这些结果,转录组学分析显示,fnrl突变体根中对异氧苯处理的反应大大降低。fnrl突变体显示组成型诱导的线粒体逆行信号,和观察到的异洛沙芬耐受性部分依赖于转录因子ANAC017,线粒体逆行信号传导的关键调节因子。此外,FNRL在所有植物谱系中都高度保守,暗示其功能的守恒。值得注意的是,fnrl突变体在芽中没有表现出生长损失,使FNRL成为生物技术应用于作物耐异恶沙芬育种的有希望的目标。
    Isoxaben is a pre-emergent herbicide used to control broadleaf weeds. While the phytotoxic mechanism is not completely understood, isoxaben interferes with cellulose synthesis. Certain mutations in cellulose synthase complex proteins can confer isoxaben tolerance; however, these mutations can cause compromised cellulose synthesis and perturbed plant growth, rendering them unsuitable as herbicide tolerance traits. We conducted a genetic screen to identify new genes associated with isoxaben tolerance by screening a selection of Arabidopsis thaliana T-DNA mutants. We found that mutations in a FERREDOXIN-NADP(+) OXIDOREDUCTASE-LIKE (FNRL) gene enhanced tolerance to isoxaben, exhibited as a reduction in primary root stunting, reactive oxygen species accumulation and ectopic lignification. The fnrl mutant did not exhibit a reduction in cellulose levels following exposure to isoxaben, indicating that FNRL operates upstream of isoxaben-induced cellulose inhibition. In line with these results, transcriptomic analysis revealed a highly reduced response to isoxaben treatment in fnrl mutant roots. The fnrl mutants displayed constitutively induced mitochondrial retrograde signalling, and the observed isoxaben tolerance is partially dependent on the transcription factor ANAC017, a key regulator of mitochondrial retrograde signalling. Moreover, FNRL is highly conserved across all plant lineages, implying conservation of its function. Notably, fnrl mutants did not show a growth penalty in shoots, making FNRL a promising target for biotechnological applications in breeding isoxaben tolerance in crops.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物细胞壁提供了一个强大而灵活的屏障来保护细胞免受外部环境的影响。细胞壁的修饰,无论是在发育过程中还是在压力条件下,可以诱导细胞壁完整性反应,并最终导致基因表达的改变,激素产生,和细胞壁组成。细胞壁组成的这些变化可能需要对分泌途径进行重塑,以促进细胞壁成分和细胞壁合成酶从高尔基体的合成和分泌。这里,我们使用了活细胞共聚焦成像和透射电子显微镜的组合,以检查短期和组成的影响,这减少了纤维素的生物合成,和driselase,一种细胞壁降解真菌酶的混合物,细胞壁完整性反应过程中的细胞过程。我们表明,两种治疗方法都改变了细胞器形态,并触发了分泌途径的重新平衡,以促进分泌,同时减少了内吞运输。细胞壁修饰后,肌动蛋白细胞骨架的动态性较低,细胞器运动减少。这些结果表明,随着细胞壁的变化,内膜系统和肌动蛋白细胞骨架的主动重塑。
    The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据法规(EC)No396/2005的第12条,EFSA已经审查了目前在欧洲水平上为农药活性物质异恶苯苯确定的最大残留水平(MRL)。为了评估植物中异氧苯残留的发生,加工商品,轮作作物和牲畜,EFSA考虑了在欧盟委员会法规(EC)第33/2008号框架中得出的结论,以及成员国和英国报告的欧洲授权(包括支持的残留数据)。根据对现有数据的评估,得出了MRL提案,并进行了消费者风险评估。尽管没有发现对消费者的明显风险,监管框架所需的一些信息缺失。因此,消费者风险评估仅被认为是指示性的,EFSA提出的一些MRL建议仍需要风险管理者进一步考虑。
    According to Article 12 of Regulation (EC) No 396/2005, EFSA has reviewed the maximum residue levels (MRLs) currently established at European level for the pesticide active substance isoxaben. To assess the occurrence of isoxaben residues in plants, processed commodities, rotational crops and livestock, EFSA considered the conclusions derived in the framework of Commission Regulation (EC) No 33/2008, as well as the European authorisations reported by Member States and the UK (including the supporting residues data). Based on the assessment of the available data, MRL proposals were derived and a consumer risk assessment was carried out. Although no apparent risk to consumers was identified, some information required by the regulatory framework was missing. Hence, the consumer risk assessment is considered indicative only and some MRL proposals derived by EFSA still require further consideration by risk managers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The remarkable desiccation tolerance of the vegetative tissues in the resurrection species Craterostigma plantagineum (Hochst.) is favored by its unique cell wall folding mechanism that allows the ordered and reversible shrinking of the cells without damaging neither the cell wall nor the underlying plasma membrane. The ability to withstand extreme drought is also maintained in abscisic acid pre-treated calli, which can be cultured both on solid and in liquid culture media. Cell wall research has greatly advanced, thanks to the use of inhibitors affecting the biosynthesis of e.g., cellulose, since they allowed the identification of the compensatory mechanisms underlying habituation. Considering the innate cell wall plasticity of C. plantagineum, the goal of this investigation was to understand whether habituation to the cellulose biosynthesis inhibitors dichlobenil and isoxaben entailed or not identical mechanisms as known for non-resurrection species and to decipher the cell wall proteome of habituated cells. The results showed that exposure of C. plantagineum calli/cells triggered abnormal phenotypes, as reported in non-resurrection species. Additionally, the data demonstrated that it was possible to habituate Craterostigma cells to dichlobenil and isoxaben and that gene expression and protein abundance did not follow the same trend. Shotgun and gel-based proteomics revealed a common set of proteins induced upon habituation, but also identified candidates solely induced by habituation to one of the two inhibitors. Finally, it is hypothesized that alterations in auxin levels are responsible for the increased abundance of cell wall-related proteins upon habituation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cell wall remodeling is essential for the control of growth and development as well as the regulation of stress responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. Regulation of root hair fate and flower development in Arabidopsis thaliana requires signaling mediated by the atypical receptor kinase STRUBBELIG (SUB). Furthermore, SUB is involved in cell wall integrity signaling and regulates the cellular response to reduced levels of cellulose, a central component of the cell wall. Here, we show that continuous exposure to sub-lethal doses of the cellulose biosynthesis inhibitor isoxaben results in altered root hair patterning and floral morphogenesis. Genetically impairing cellulose biosynthesis also results in root hair patterning defects. We further show that isoxaben exerts its developmental effects through the attenuation of SUB signaling. Our evidence indicates that downregulation of SUB is a multi-step process and involves changes in SUB complex architecture at the plasma membrane, enhanced removal of SUB from the cell surface, and downregulation of SUB transcript levels. The results provide molecular insight into how the cell wall regulates cell fate and tissue morphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    BACKGROUND: Thaxtomin A (TA) is a natural cellulose biosynthesis inhibitor (CBI) synthesized by the potato common scab-causing pathogen Streptomyces scabies. Inhibition of cellulose synthesis by TA compromises cell wall organization and integrity, leading to the induction of an atypical program of cell death (PCD). These processes may facilitate S. scabies entry into plant tissues. To study the mechanisms that regulate the induction of cell death in response to inhibition of cellulose synthesis, we used Arabidopsis thaliana cell suspension cultures treated with two structurally different CBIs, TA and the herbicide isoxaben (IXB).
    RESULTS: The induction of cell death by TA and IXB was abrogated following pretreatment with the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) and the natural auxin indole-3-acetic acid (IAA). The addition of auxin efflux inhibitors also inhibited the CBI-mediated induction of PCD. This effect may be due to intracellular accumulation of auxin. Auxin has a wide range of effects in plant cells, including a role in the control of cell wall composition and rigidity to facilitate cell elongation. Using Atomic Force Microscopy (AFM)-based force spectroscopy, we found that inhibition of cellulose synthesis by TA and IXB in suspension-cultured cells decreased cell wall stiffness to a level slightly different than that caused by auxin. However, the cell wall stiffness in cells pretreated with auxin prior to CBI treatment was equivalent to that of cells treated with auxin only.
    CONCLUSIONS: Addition of auxin to Arabidopsis cell suspension cultures prevented the TA- and IXB-mediated induction of cell death. Cell survival was also stimulated by inhibition of polar auxin transport during CBI-treatment. Inhibition of cellulose synthesis perturbed cell wall mechanical properties of Arabidopsis cells. Auxin treatment alone or with CBI also decreased cell wall stiffness, showing that the mechanical properties of the cell wall perturbed by CBIs were not restored by auxin. However, since auxin\'s effects on the cell wall stiffness apparently overrode those induced by CBIs, we suggest that auxin may limit the impact of CBIs by restoring its own transport and/or by stabilizing the plasma membrane - cell wall - cytoskeleton continuum.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The cellulose synthase (CESA) proteins in Arabidopsis play an essential role in the production of cellulose in the cell walls. Herbicides such as isoxaben and flupoxam specifically target this production process and are prominent cellulose biosynthesis inhibitors (CBIs). Forward genetic screens in Arabidopsis revealed that mutations that can result in varying degrees of resistance to either isoxaben or flupoxam CBI can be attributed to single amino acid substitutions in primary wall CESAs. Missense mutations were almost exclusively present in the predicted transmembrane regions of CESA1, CESA3, and CESA6. Resistance to isoxaben was also conferred by modification to the catalytic residues of CESA3. This resulted in cellulose deficient phenotypes characterized by reduced crystallinity and dwarfism. However, mapping of mutations to the transmembrane regions also lead to growth phenotypes and altered cellulose crystallinity phenotypes. These results provide further genetic evidence supporting the involvement of CESA transmembrane regions in cellulose biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [This corrects the article DOI: 10.3389/fpls.2017.02234.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The Arabidopsis NPK1-related Protein kinases ANP1, ANP2 and ANP3 belong to the MAP kinase kinase kinase (MAPKKK) superfamily and were previously described to be crucial for cytokinesis, elicitor-induced immunity and development. Here we investigate the basis of their role in development by using conditional β-estradiol-inducible triple mutants to overcome lethality. In seedlings, lack of ANPs causes root cell bulging, with the transition zone being the most sensitive region. We uncover a role of ANPs in the regulation of cell wall composition and suggest that developmental defects of the triple mutants, observed at the cellular level, might be a consequence of the alterations of the pectic and cellulosic cell wall components. Lack of ANPs also induced a typical cell wall damage syndrome (CWDS) similar to that observed in plants treated with the cellulose biosynthesis inhibitor isoxaben (ISX). Moreover, anp double mutants and plants overexpressing single ANPs (ANP1 or ANP3) respectively showed increased and reduced accumulation of jasmonic acid and PDF1.2 transcripts upon ISX treatment, suggesting that ANPs are part of the pathway targeted by this inhibitor and play a role in cell wall integrity surveillance. Highlights: The loss of ANP function affects cell wall composition and leads to typical cell wall damage-induced phenotypes, such as ectopic lignification and jasmonic acid accumulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    BACKGROUND: Cellulose biosynthesis inhibitors (CBIs) are pre-emergence herbicides that inhibit anisotropic cell expansion resulting in a severely swollen and stunted growth phenotype. Resistance to group 21 CBIs, such as isoxaben, is conferred by missense mutations in CELLOSE SYNTHASE A (CesA) genes required for primary cell wall synthesis, concluding that this is their in vivo target.
    RESULTS: Herein, we show that grasses exhibit tolerance to group 21 CBIs and explore the mechanism of tolerance to isoxaben in the grass Brachypodium distachyon (L.). Comparative genomics failed to identify synonymous point mutations that have been found to confer isoxaben resistance in the dicot Arabidopsis thaliana (L.). Brachypodium did not metabolize 14 C-isoxaben. We next explored the role of grass-specific non-cellulosic cell wall components, specifically the hemicellulose polysaccharide mix linkage glucans (MLG), as a potential tolerance mechanism by compensating for the loss of cellulose during cell elongation. A partial-transcriptional knockdown T-DNA insertion was found in a key MLG synthesis gene, Cellulose synthase-like F6 (CslF6) and this mutant was found to be 2.1 times more sensitive to isoxaben than wild-type plants.
    CONCLUSIONS: These data suggest that the composition and compensatory response of grass cell walls may be a factor in conferring tolerance to group 21 CBIs. © 2017 Society of Chemical Industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号