interneuron

中间神经元
  • 文章类型: Journal Article
    下膜是颞叶癫痫病理活动开始的大脑关键区域,和局部GABA能抑制对于预防源自脑下的癫痫样放电至关重要。针状锥体细胞可以根据其不同的放电模式轻松分为两类。这里,我们比较了GABAa受体介导的抑制性突触后电流的强度爆发放电下囊神经元及其通过μ阿片受体激活的动态调节。我们利用了同一细胞的顺序重新修补,根据它们的放电模式对锥体神经元进行初步分类,然后测量由光遗传学刺激表达小白蛋白和生长抑素的中间神经元触发的GABA能事件。表达小白蛋白的细胞的激活在突触后爆发神经元中产生更大的反应,而通过刺激生长抑素表达中间神经元引起的电流则相反。在所有情况下,事件严重依赖于ω-agatoxinIVA-但不依赖于ω-conotoxinGVIA敏感的钙通道。暴露于μ阿片受体激动剂后,源自表达小白蛋白和生长抑素的细胞的光生GABA能输入的幅度降低。这种药理敏感性的动力学在常规和爆发神经元,但只有当反应由表达小白蛋白的神经元的激活引起时,而当刺激生长抑素表达细胞时没有观察到差异。总之,我们的结果表明,高度的复杂性调节下GABA能抑制的组织原理,突触前和突触后多样性在多个层面的相互作用。关键要点:光遗传学刺激表达小白蛋白和生长抑素的中间神经元(PV和SOMs)在正则和爆发激发(RF和BF)下锥体细胞中触发抑制性突触后电流(IPSC)。来自PV的光遗传学诱发的IPSC(PV-optoIPSC)的振幅在BF中较大,而通过SOM的光激活产生的IPSC(SOM-optoIPSC)在RF中较大。PV-和SOM-optoIPSCs都严重依赖于ω-agatoxinIVA敏感的P/Q型电压门控钙通道,而暴露于ω-芋螺毒素GVIA后没有观察到主要影响,提示N型通道无明显受累。PV-和SOM-optoIPSC的振幅通过突触前μ阿片受体的可能的药理激活而降低,在来自RF的PV-optoIPSC中观察到的效应动力学更快BFs,但在SOM-optoIPSC中没有。这些结果帮助我们了解调节GABA能输入到针状微电路的不同多样性层之间的复杂相互作用。
    The subiculum is a key region of the brain involved in the initiation of pathological activity in temporal lobe epilepsy, and local GABAergic inhibition is essential to prevent subicular-originated epileptiform discharges. Subicular pyramidal cells may be easily distinguished into two classes based on their different firing patterns. Here, we have compared the strength of the GABAa receptor-mediated inhibitory postsynaptic currents received by regular- vs. burst-firing subicular neurons and their dynamic modulation by the activation of μ opioid receptors. We have taken advantage of the sequential re-patching of the same cell to initially classify pyramidal neurons according to their firing patters, and then to measure GABAergic events triggered by the optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons. Activation of parvalbumin-expressing cells generated larger responses in postsynaptic burst-firing neurons whereas the opposite was observed for currents evoked by the stimulation of somatostatin-expressing interneurons. In all cases, events depended critically on ω-agatoxin IVA- but not on ω-conotoxin GVIA-sensitive calcium channels. Optogenetic GABAergic input originating from both parvalbumin- and somatostatin-expressing cells was reduced in amplitude following the exposure to a μ opioid receptor agonist. The kinetics of this pharmacological sensitivity was different in regular- vs. burst-firing neurons, but only when responses were evoked by the activation of parvalbumin-expressing neurons, whereas no differences were observed when somatostatin-expressing cells were stimulated. In conclusion, our results show that a high degree of complexity regulates the organizing principles of subicular GABAergic inhibition, with the interaction of pre- and postsynaptic diversity at multiple levels. KEY POINTS: Optogenetic stimulation of parvalbumin- and somatostatin-expressing interneurons (PVs and SOMs) triggers inhibitory postsynaptic currents (IPSCs) in both regular- and burst-firing (RFs and BFs) subicular pyramidal cells. The amplitude of optogenetically evoked IPSCs from PVs (PV-opto IPSCs) is larger in BFs whereas IPSCs generated by the light activation of SOMs (SOM-opto IPSCs) are larger in RFs. Both PV- and SOM-opto IPSCs critically depend on ω-agatoxin IVA-sensitive P/Q type voltage-gated calcium channels, whereas no major effects are observed following exposure to ω-conotoxin GVIA, suggesting no significant involvement of N-type channels. The amplitude of both PV- and SOM-opto IPSCs is reduced by the probable pharmacological activation of presynaptic μ opioid receptors, with a faster kinetics of the effect observed in PV-opto IPSCs from RFs vs. BFs, but not in SOM-opto IPSCs. These results help us understand the complex interactions between different layers of diversity regulating GABAergic input onto subicular microcircuits.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肾素-血管紧张素系统已被确定为创伤后应激障碍的潜在治疗靶点,虽然它的机制还没有很好的理解。脑血管紧张素2型受体(AT2R)是位于应激和焦虑相关区域的血管紧张素II受体的亚型,包括内侧前额叶皮层(mPFC),但它们在mPFC中的功能和机制仍未被探索。因此,我们使用了成像的组合,cre/lox,和行为方法研究恐惧和stess相关行为中表达mPFC-AT2R的神经元。
    为了表征mPFC中表达mPFC-AT2R的神经元,AT2R-Cre/td番茄雄性和雌性小鼠用于免疫组织化学。mPFC脑切片用谷氨酸能或中间神经元标记染色,和AT2R+细胞的密度以及与每个标记物的共定位被定量。为了评估AT2R-flox小鼠的恐惧相关行为,我们使用表达Cre的腺相关病毒从mPFC神经元中选择性删除AT2R。然后小鼠接受巴甫洛夫听觉恐惧调节,高架加上迷宫,和开放式现场测试。
    免疫组织化学结果表明,AT2R在整个mPFC中密集表达,并主要以性别依赖性方式在生长抑素中间神经元中表达。在恐惧调理之后,mPFC-AT2RCre-lox缺失损害了雌性小鼠而不是雄性小鼠的灭绝和探索行为增加,而两性的mPFC-AT2R缺失均未改变运动能力。
    这些结果将mPFC-AT2R+神经元确定为生长抑素中间神经元的新亚组,并揭示了它们在以性别依赖方式调节恐惧学习中的作用,可能为创伤后应激障碍的新治疗靶点提供见解。
    创伤后应激障碍(PTSD)是心血管疾病(CVD)的重要预测因子,尽管对潜在的机制知之甚少。脑肾素-血管紧张素系统(RAS)对于心血管和情绪压力调节很重要,可能有助于更好地了解PTSD与CVD风险之间的联系。我们的研究表明,脑血管紧张素II2型受体(AT2R)亚型位于内侧前额叶皮质(mPFC)的特定生长抑素(SOM)中间神经元上,并在恐惧记忆消退中起作用,尤其是女性。这些发现揭示了mPFC-AT2R在基于恐惧的学习和记忆中的作用,提供对PTSD-CVD关联和治疗策略的潜在机制的潜在见解。
    UNASSIGNED: The renin-angiotensin system has been identified as a potential therapeutic target for posttraumatic stress disorder, although its mechanisms are not well understood. Brain angiotensin type 2 receptors (AT2Rs) are a subtype of angiotensin II receptors located in stress and anxiety-related regions, including the medial prefrontal cortex (mPFC), but their function and mechanism in the mPFC remain unexplored. Therefore, we used a combination of imaging, cre/lox, and behavioral methods to investigate mPFC-AT2R-expressing neurons in fear and stess related behavior.
    UNASSIGNED: To characterize mPFC-AT2R-expressing neurons in the mPFC, AT2R-Cre/tdTomato male and female mice were used for immunohistochemistry. mPFC brain sections were stained with glutamatergic or interneuron markers, and density of AT2R+ cells and colocalization with each marker were quantified. To assess fear-related behaviors in AT2R-flox mice, we selectively deleted AT2R from mPFC neurons using a Cre-expressing adeno-associated virus. Mice then underwent Pavlovian auditory fear conditioning, elevated plus maze, and open field testing.
    UNASSIGNED: Immunohistochemistry results revealed that AT2R was densely expressed throughout the mPFC and primarily expressed in somatostatin interneurons in a sex-dependent manner. Following fear conditioning, mPFC-AT2R Cre-lox deletion impaired extinction and increased exploratory behavior in female but not male mice, while locomotion was unaltered by mPFC-AT2R deletion in both sexes.
    UNASSIGNED: These results identify mPFC-AT2R+ neurons as a novel subgroup of somatostatin interneurons and reveal their role in regulating fear learning in a sex-dependent manner, potentially offering insights into novel therapeutic targets for posttraumatic stress disorder.
    Posttraumatic stress disorder (PTSD) is a significant predictor of cardiovascular disease (CVD), although the underlying mechanisms are poorly understood. The brain renin-angiotensin system (RAS) is important for cardiovascular and emotional stress regulation and may better help understand the link between PTSD and CVD risk. Our research reveals that the brain angiotensin II type 2 receptor (AT2R) subtype is located on specific somatostatin (SOM+) interneurons in the medial prefrontal cortex (mPFC) and plays a role in fear memory extinction, particularly in females. These findings reveal a role for the mPFC-AT2R in fear-based learning and memory, offering potential insights into the mechanisms underlying the PTSD-CVD association and therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    齿状回(DG)中丰富的突触信息的处理依赖于不同群体的抑制性GABA能中间神经元来调节细胞和回路活动,以特定于图层的方式。代谢型GABAB受体(GABABR)对DG回路提供了强大的抑制作用,在与行为和学习一致的时间尺度上,但是它们在控制中间神经元活动中的作用在确定的细胞类型方面知之甚少。我们假设GABABRs在信号强度方面表现出细胞类型特异性异质性,这将对DG网络中的信号处理产生直接影响。为了测试这个,我们从确定的DG主细胞和中间神经元进行体外全细胞膜片钳记录,其次是GABABR药理学,笼状GABA的光解,和内源性GABA释放的细胞外刺激,以对细胞类型特异性抑制潜力进行分类。根据我们以前对DG中间神经元的分类,我们表明,突触后GABABR介导的电流存在于所有中间神经元类型,尽管在不同的幅度,很大程度上取决于体细胞的位置和突触的目标。GABABR与向内整流的K通道偶联,从而大大降低了观察到大电流的中间神经元的兴奋性。这些数据提供了大鼠DG中GABABR信号传导的系统表征,以提供对回路动力学的更深入了解。
    The processing of rich synaptic information in the dentate gyrus (DG) relies on a diverse population of inhibitory GABAergic interneurons to regulate cellular and circuit activity, in a layer-specific manner. Metabotropic GABAB-receptors (GABABRs) provide powerful inhibition to the DG circuit, on timescales consistent with behavior and learning, but their role in controlling the activity of interneurons is poorly understood with respect to identified cell types. We hypothesize that GABABRs display cell type-specific heterogeneity in signaling strength, which will have direct ramifications for signal processing in DG networks. To test this, we perform in vitro whole-cell patch-clamp recordings from identified DG principal cells and interneurons, followed by GABABR pharmacology, photolysis of caged GABA, and extracellular stimulation of endogenous GABA release to classify the cell type-specific inhibitory potential. Based on our previous classification of DG interneurons, we show that postsynaptic GABABR-mediated currents are present on all interneuron types albeit at different amplitudes, dependent largely on soma location and synaptic targets. GABABRs were coupled to inwardly-rectifying K+ channels that strongly reduced the excitability of those interneurons where large currents were observed. These data provide a systematic characterization of GABABR signaling in the rat DG to provide greater insight into circuit dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人类强大的认知能力,包括创造力和语言,是可能的,至少在很大程度上,通过对大脑皮层的进化改变。本文回顾了哺乳动物皮质放射状神经胶质细胞(原代神经干细胞)的生物学和进化,并介绍了遗传逐步过程的概念,基于已经使用的核心分子途径,是塑造皮质神经发生的进化过程。核心机制,这在我们最近的研究中已经发现,是细胞外信号调节激酶(ERK)-骨形态发生蛋白7(BMP7)-GLI3阻遏物形式(GLI3R)-Sonichedgehog(SHH)正反馈环。此外,我认为皮质进化侏儒症的分子基础,以起源于更大的旋脑祖先的间脑小鼠为例,是放射状神经胶质中SHH信号的增加,拮抗ERK-BMP7信号。最后,我认为:(1)SHH信号不是灵长类动物皮质扩张和折叠的关键调节因子;(2)人皮质放射状神经胶质细胞不产生新皮质中间神经元;(3)人特异性基因可能不是大多数皮质扩张所必需的。我希望这次审查能帮助外地的同事,指导研究,以解决我们对皮质发育和进化的理解中的差距。
    Human\'s robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已通过其细胞/分子组成的异质性鉴定了海马CA1中的不同神经元类别。这些类别如何与海马功能和支持灵长类动物认知的网络动力学相关仍不清楚。这里,我们报道了在自由移动的猕猴的CA1中的抑制性功能细胞群,它们对网络状态和彼此的不同反应谱表明在CA1的功能微电路中具有不同和特定的作用.此外,按浅层或深层位置分组的锥体细胞的发射速率不同,突发性,和尖锐的波波纹相关的发射。他们还显示了与抑制性细胞群的层特异性尖峰定时相互作用,暗示分离的神经群体。此外,合奏记录显示,细胞组件优先根据这些地层进行组织。这些结果表明,自由运动的猕猴中的海马CA1具有亚层特异性回路组织,可能会影响其在认知中的作用。
    Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here, we report inhibitory functional cell groups in CA1 of freely moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were grouped by their superficial or deep layer position differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest that hippocampal CA1 in freely moving macaques bears a sublayer-specific circuit organization that may shape its role in cognition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CA3区域由于其独特的连通性而在学习和记忆过程中对海马功能至关重要。CA3锥体神经元是巨大的目标,来自DG轴突的兴奋性苔藓纤维突触,并具有异常高的兴奋性循环连通性。因此,在学习和记忆过程中,抑制可能在限制失控的激励和形成CA3合奏中起着非常重要的作用。这里,我们研究了一组树突靶向的功能,海马GABA能神经元由突触粘附分子的表达定义,Kirrel3.我们发现,在新环境中,激活表达Kirrel3的GABA能神经元通过抑制CA3锥体神经元来损害记忆辨别能力。Kirrel3是DG到GABA突触形成所必需的,Kirrel3的变体是神经发育障碍的强烈危险因素。因此,我们的工作表明,Kirrel3-GABA神经元是情境记忆期间从DG到CA3的前馈抑制的关键来源,其活动可能在某些脑部疾病中被特异性破坏.
    The CA3 region is central to hippocampal function during learning and memory and has a unique connectivity. CA3 pyramidal neurons are the targets of huge, excitatory mossy fiber synapses from DG axons and have a high degree of excitatory recurrent connectivity. Thus, inhibition likely plays an outsized importance in constraining excitation and shaping CA3 ensembles during learning and memory. Here, we investigate the function of a never-before studied set of dendrite-targeting, GABAergic neurons defined by expression of the synaptic adhesion molecule, Kirrel3. We discovered that activating Kirrel3-expressing GABAergic neurons specifically impairs memory discrimination and inhibits CA3 pyramidal neurons in novel contexts. Kirrel3 is required for DG-to-GABA synapse formation and variants in Kirrel3 are strong risk factors for neurodevelopmental disorders. Thus, our work suggests that Kirrel3-GABA neurons are a critical source of feed-forward inhibition from DG to CA3 during the encoding and retrieval of contextual memories, a function which may be specifically disrupted in some brain disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基底外侧杏仁核在调节恐惧和焦虑中起着关键作用,这些过程受到情绪唤醒期间招募的不同神经调节系统的深刻调节。最近的研究表明,BLA中间神经元的活动和BLA主细胞中的抑制性突触传递受神经调节剂的调节,以影响BLA的输出和振荡网络状态。最终是恐惧和焦虑的行为表达。在这次审查中,我们首先总结了BLA抑制性突触中糖皮质激素和内源性大麻素信号相互作用介导的应激诱导焦虑发生的细胞机制。然后,我们讨论了神经调节剂在BLA外周小白蛋白表达(PV)和胆囊收缩素表达(CCK)篮状细胞中聚集在Gq信号通路上诱导的细胞类型特异性活性模式及其对BLA网络振荡和恐惧学习的影响。
    The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    成年乌龟脊髓可以产生多种肢体运动,包括游泳,刮伤的三种形式,和肢体退缩(屈曲反射),即使没有大脑输入和感觉反馈。有许多多功能脊髓神经元,在多种运动模式下激活,和一些行为特化的神经元,只有一个激活。多功能和行为特化神经元各自如何对运动输出做出贡献?我们分析了多功能和特化神经元的体内细胞内记录。在游泳和抓挠期间,神经元倾向于在髋屈肌活动周期的同一阶段出现尖峰,虽然一个人更喜欢相反的阶段。在游泳和抓挠期间,与特化神经元相比,更多的多功能神经元具有高度节律性。一组多功能神经元在髋屈肌开启阶段活跃,另一组在髋屈肌关闭阶段活跃。因此,在游泳和抓挠过程中,一组多功能脊髓神经元可能会产生髋屈-伸肌交替。划痕特化神经元和屈曲反射选择性神经元可能会触发它们各自的运动模式,通过偏置多功能神经元的活动。在多功能神经元的相平均膜电位中,与高峰阶段相比,低谷阶段在游泳和抓挠之间的相关性更高,这表明有节奏的抑制比有节奏的兴奋发挥更大的作用。我们还提供了海龟游泳专用神经元的第一个细胞内记录:游泳时音调兴奋,但在抓挠和屈曲反射时不活跃。在每次引起游泳的电刺激后,它都显示出兴奋性突触后电位,因此可能是网状脊髓轴突和它们激活的游泳CPG之间的中介。意义陈述我们分析了体内多功能和行为特化乌龟脊髓神经元的细胞内记录,包括划痕特化和屈曲反射选择性神经元。在游泳和刮擦运动模式中,与行为特化的神经元相比,有更多的高度节律的多功能神经元;它们的节律调节似乎主要是由抑制引起的。多功能神经元可以形成中央模式发生器的核心元素,而行为特化的神经元触发每种运动模式。我们还在细胞内记录了第一个乌龟游泳专用的神经元。
    The adult turtle spinal cord can generate multiple kinds of limb movements, including swimming, three forms of scratching, and limb withdrawal (flexion reflex), even without brain input and sensory feedback. There are many multifunctional spinal neurons, activated during multiple motor patterns, and some behaviorally specialized neurons, activated during only one. How do multifunctional and behaviorally specialized neurons each contribute to motor output? We analyzed in vivo intracellular recordings of multifunctional and specialized neurons. Neurons tended to spike in the same phase of the hip-flexor (HF) activity cycle during swimming and scratching, though one preferred opposite phases. During both swimming and scratching, a larger fraction of multifunctional neurons than specialized neurons were highly rhythmic. One group of multifunctional neurons was active during the HF-on phase and another during the HF-off phase. Thus, HF-extensor alternation may be generated by a subset of multifunctional spinal neurons during both swimming and scratching. Scratch-specialized neurons and flexion reflex-selective neurons may instead trigger their respective motor patterns, by biasing activity of multifunctional neurons. In phase-averaged membrane potentials of multifunctional neurons, trough phases were more highly correlated between swimming and scratching than peak phases, suggesting that rhythmic inhibition plays a greater role than rhythmic excitation. We also provide the first intracellular recording of a turtle swim-specialized neuron: tonically excited during swimming but inactive during scratching and flexion reflex. It displayed an excitatory postsynaptic potential following each swim-evoking electrical stimulus and thus may be an intermediary between reticulospinal axons and the swimming CPG they activate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:对感官刺激的反应夸张,脆性X综合征(FXS)的标志,有助于焦虑和学习挑战。在FXS的Fmr1敲除(KO)小鼠模型中概括了感觉超敏反应。Fmr1KO小鼠的最新研究表明,皮层中间神经元的活性差异以及发育过程中GABA信号极性的延迟转换。以前,我们报道了用利尿剂布美他尼阻断氯化物转运蛋白NKCC1,可以挽救Fmr1KO小鼠初级体感皮层(S1)的突触回路表型。然而,目前尚不清楚布美他尼是否能挽救Fmr1KO小鼠早期的回路表型或感觉超敏反应.
    方法:我们在Fmr1KO小鼠中使用了布美他尼的急性和慢性全身给药,并进行了体内2光子钙成像以记录神经元活动,同时使用高分辨率视频跟踪鼠标行为。
    结果:我们证明,与野生型对照相比,Fmr1KO小鼠S1的层(L)2/3锥体神经元在出生后第6天(P)显示出更高的同步事件频率。这通过急性施用布美他尼来逆转。此外,慢性布美他尼治疗(P5-P14)恢复了Fmr1KO小鼠的S1回路差异,包括减少神经元对重复胡须刺激的适应,和改善触觉防御。布美他尼治疗还纠正了S1中L2/3神经元的前馈抑制减少,并增强了小白蛋白中间神经元的回路参与。
    结论:这进一步支持了突触,电路,Fmr1KO的感觉行为表型可以通过NKCC1的抑制剂来缓解,如FDA批准的利尿剂布美他尼.
    BACKGROUND: Exaggerated responses to sensory stimuli, a hallmark of fragile X syndrome, contribute to anxiety and learning challenges. Sensory hypersensitivity is recapitulated in the Fmr1 knockout (KO) mouse model of fragile X syndrome. Recent studies in Fmr1 KO mice have demonstrated differences in the activity of cortical interneurons and a delayed switch in the polarity of GABA (gamma-aminobutyric acid) signaling during development. Previously, we reported that blocking the chloride transporter NKCC1 with the diuretic bumetanide could rescue synaptic circuit phenotypes in the primary somatosensory cortex (S1) of Fmr1 KO mice. However, it remains unknown whether bumetanide can rescue earlier circuit phenotypes or sensory hypersensitivity in Fmr1 KO mice.
    METHODS: We used acute and chronic systemic administration of bumetanide in Fmr1 KO mice and performed in vivo 2-photon calcium imaging to record neuronal activity, while tracking mouse behavior with high-resolution videos.
    RESULTS: We demonstrated that layer 2/3 pyramidal neurons in the S1 of Fmr1 KO mice showed a higher frequency of synchronous events on postnatal day 6 than wild-type controls. This was reversed by acute administration of bumetanide. Furthermore, chronic bumetanide treatment (postnatal days 5-14) restored S1 circuit differences in Fmr1 KO mice, including reduced neuronal adaptation to repetitive whisker stimulation, and ameliorated tactile defensiveness. Bumetanide treatment also rectified the reduced feedforward inhibition of layer 2/3 neurons in the S1 and boosted the circuit participation of parvalbumin interneurons.
    CONCLUSIONS: This further supports the notion that synaptic, circuit, and sensory behavioral phenotypes in Fmr1 KO can be mitigated by inhibitors of NKCC1, such as the Food and Drug Administration-approved diuretic bumetanide.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钙调神经磷酸酶抑制剂,如环孢菌素和他克莫司(FK506),是用于保存移植器官和组织的常用免疫抑制剂。然而,这些药物会引起严重和持续的疼痛。GluA2缺乏,钙通透性AMPA受体(CP-AMPAR)与各种神经系统疾病有关,包括神经性疼痛.目前尚不清楚钙调磷酸酶是否以及如何构成,aCa2+/钙调蛋白磷酸酶,控制突触CP-AMPAR。在这项研究中,我们发现,用IEM-1460阻断CP-AMPAR显著降低了表达囊泡谷氨酸转运体2(VGluT2)的兴奋性神经元中AMPAR-EPSCs的幅度,但不在表达囊泡GABA转运蛋白的抑制性神经元中,在FK506处理的雄性和雌性小鼠的脊髓中。FK506处理还引起了AMPAR-EPSC的电流-电压关系的内向整流,特别是在VGluT2神经元中。鞘内注射IEM-1460迅速缓解FK506治疗小鼠的疼痛超敏反应。此外,FK506治疗显着增加了脊髓中α2δ-1与GluA1和GluA2的物理相互作用,并减少了脊髓内质网富集部分中的GluA1/GluA2异聚体。相应地,用普瑞巴林抑制α2δ-1,Cacna2d1基因敲除,或破坏α2δ-1-AMPAR与α2δ-1C末端肽的相互作用,可逆转FK506治疗引起的脊髓VGluT2神经元中AMPAR-EPSC的向内整流。此外,CK2抑制逆转FK506治疗引起的疼痛超敏反应,α2δ-1与GluA1和GluA2的相互作用,以及脊髓VGluT2神经元中AMPAR-EPSCs的向内整流。因此,脊髓兴奋性神经元中突触CP-AMPAR的患病率增加在钙调磷酸酶抑制剂诱导的疼痛超敏反应中起主要作用.钙调神经磷酸酶和CK2通过α2δ-1介导的脊髓背角GluA1/GluA2异聚组装拮抗性调节突触后CP-AMPAR.意义声明临床使用的钙调磷酸酶抑制剂可引起严重疼痛,称为钙调磷酸酶抑制剂诱导的疼痛综合征(CIPS)。然而,其潜在的机制仍然难以捉摸。这项研究首次表明,钙调磷酸酶抑制导致脊髓兴奋性神经元中突触Ca2可渗透的AMPARs的细胞类型特异性表达。阻断脊髓Ca2+通透性AMPAR降低CIPS。钙调磷酸酶抑制增强了α2δ-1(以前称为钙通道亚基)与GluA1和GluA2亚基的相互作用,破坏它们在脊髓中的细胞内组装。此外,抑制脊髓CK2减少了α2δ-1-AMPAR相互作用和钙调磷酸酶抑制剂增强的突触Ca2通透性AMPAR。因此,钙调神经磷酸酶和CK2通过α2δ-1介导的GluA1/GluA2组装动态控制脊髓兴奋性神经元的AMPAR表型。靶向α2δ-1和CK2是治疗CIPS的有效策略。
    Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号