human splicing finder

人体拼接取景器
  • 文章类型: Case Reports
    OBJECTIVE: The triple A syndrome (AAAS) is an inherited condition associated with mutations in the AAAS gene, which encodes a protein of 546 amino acids known as ALADIN (alacrima achalasia adrenal insufficiency neurologic disorder) whose function is not well understood. This protein belongs to the WD-repeat family of regulatory proteins and is located in the nuclear pore complexes. Only a few cohorts of AAAS patients have been reported and fully characterized. Thus, the objective of the present study was to report on a mini cohort of Italian AAAS patients and to get insights on their predisposing genetic defects.
    METHODS: Genetic analysis of AAAS gene in triple A syndrome patient and molecular and functional characterization of the novel identified allelic variants.
    RESULTS: Here we describe three newly diagnosed cases of AAAS, in whom genetic analysis allowed us to identify two novel allelic variants in the AAAS gene: the frameshift substitution c.765 dupT (p.Gly256Trp fsX67) in exon 8 and the splice site mutation in intron 11(c.997-2 A > G, IVS11-2A > G). Both variants result in a truncated non-functional protein, as we demonstrate by transcript analysis and expression studies.
    CONCLUSIONS: Our findings establish a pathogenic role for both new variants. Moreover, our data highlight the essential role of the C-terminal domain of the protein for its correct targeting and function and underline the importance of sequencing splice sites surrounding the intron-exon junctions to ensure accurate molecular diagnosis and correct genetic counseling in AAAS patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    DMD gene which is composed of 79 exons is the largest known gene located on X chromosome (Xp21). Point mutations in the dystrophin gene are responsible for 30-35% of cases with DMD/BMD. Mutation analysis of all the exons of the DMD gene is costly in developing countries, therefore, a few of the exons are selected to be analyzed routinely in clinical laboratories. In this study, direct sequencing was used for detection of point mutations in 10 exons of dystrophin gene in patients affected with DMD without detectable large rearrangements. Freely available programs were used to predict the damaging effects of the mutations. Point mutations were successfully detected in three patients. Three novel mutations, two missense mutations located on nonconservative domains and a single nucleotide deletion, were detected. Missense mutations were predicted to change splicing efficiency. Detection of point mutations by DNA analysis followed by prediction of the pathogenecity by using bioinformatic tool might be an asset to provide proper diagnosis or genetic counseling to patients and their family.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Petersplus综合征是一种罕见的隐性常染色体疾病,包括眼前节发育不全,身材矮小,手部异常和独特的面部特征。它仅与13q12.3区域中B3GALTL基因的突变有关。在这项研究中,我们使用离体方法对B3GALTL基因内的新型c.597-2A>G剪接突变进行了首次功能分析。结果表明,B3GALTLcDNA中外显子8完全跳跃,它改变了突变体转录本的开放阅读框,并在外显子9内产生了PTC。该发现潜在地引起无义mRNA被NMD降解(无义介导的mRNA衰变)。剪接位点突变的理论后果,用生物信息学工具HumanSpliceFinder预测,进行了与离体结果相关的调查和评估。研究结果证实了B3GALTL基因在典型的Peters-plus综合征中的关键作用,以及mRNA分析的实用性,以了解这种突变的主要影响和疾病的表型。
    Peters plus syndrome is a rare recessive autosomal disorder comprising ocular anterior segment dysgenesis, short stature, hand abnormalities and distinctive facial features. It was related only to mutations in the B3GALTL gene in the 13q12.3 region. In this study, we undertook the first functional analysis of a novel c.597-2 A>G splicing mutation within the B3GALTL gene using an ex-vivo approach. The results showed a complete skipping of exon 8 in the B3GALTL cDNA, which altered the open reading frame of the mutant transcript and generated a PTC within exon 9. This finding potentially elicits the nonsense mRNA to degradation by NMD (nonsense-mediated mRNA decay). The theoretical consequences of splice site mutations, predicted with the bioinformatics tool Human Splice Finder, were investigated and evaluated in relation to ex-vivo results. The findings confirmed the key role played by the B3GALTL gene in typical Peters-plus syndromes and the utility of mRNA analysis to understand the primary impacts of this mutation and the phenotype of the disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号