homeodomain

Homeodomain
  • 文章类型: Journal Article
    主要分类群的进化通常与新基因家族的出现有关。在所有多细胞动物中,除了海绵和梳子果冻,基因组中含有Hox基因,是发展的关键监管者。Hox基因的规范功能涉及双侧动物身体部位的共线模式。这个通用功能是通过复杂的,精确协调的机制,并非所有这些都是进化上保守和充分理解的。我们建议,这种监管复杂性的出现是在更古老的形态发生程序或其各个元素之间进行合作的阶段之前。这些程序的足迹可能存在于现代动物中以执行非规范的Hox函数。Hox基因的非经典功能参与维持终末神经细胞特异性,自噬,卵子发生,原肠胚形成前胚胎发生,垂直信号,和一些一般的生物过程。这些功能是通过同源域蛋白的基本特性实现的,并且可能随后触发了副Hoxozoa和肾动物的进化。在我们的评论中讨论了其中一些非规范的Hox函数。
    The evolution of major taxa is often associated with the emergence of new gene families. In all multicellular animals except sponges and comb jellies, the genomes contain Hox genes, which are crucial regulators of development. The canonical function of Hox genes involves colinear patterning of body parts in bilateral animals. This general function is implemented through complex, precisely coordinated mechanisms, not all of which are evolutionarily conserved and fully understood. We suggest that the emergence of this regulatory complexity was preceded by a stage of cooperation between more ancient morphogenetic programs or their individual elements. Footprints of these programs may be present in modern animals to execute non-canonical Hox functions. Non-canonical functions of Hox genes are involved in maintaining terminal nerve cell specificity, autophagy, oogenesis, pre-gastrulation embryogenesis, vertical signaling, and a number of general biological processes. These functions are realized by the basic properties of homeodomain protein and could have triggered the evolution of ParaHoxozoa and Nephrozoa subsequently. Some of these non-canonical Hox functions are discussed in our review.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    果蝇神经系统发育通过一系列特征明确的步骤进行,其中同源结构域转录因子(HDTFs)在大多数过程中发挥关键作用,如果不是全部,阶段。引人注目的是,虽然一些HDTF只有一个角色,许多其他人参与了发展过程的多个步骤。大多数参与神经系统发育的果蝇HDTF在脊椎动物中都是保守的,并且在脊椎动物发育过程中经常发挥类似的作用。在这个聚光灯下,我们关注HDTFs在胚胎发育过程中的作用,他们最初被描述的地方。
    Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    配对同源域转录因子2(PITX2)与眼部和心脏发育密切相关。PITX2的突变与Axenfeld-Rieger综合征有关,常染色体显性遗传疾病和心房颤动,一种常见的心律失常.在这项研究中,我们从NCBI-dbSNP和Ensembl数据库中挖掘了PITX2基因的错义突变,使用五种模拟预测工具SIFT评估同源结构域和C末端区域中错义变体的致病性,PolyPhen2,GERP,突变评估员和CADD。15个同源结构域突变G42V,G42R,R45W,S49Y,R53W,E53D,E55V,R62H,P65S,R69H,G75R,R84G,R86K,R87W,两种SIFT都发现R91P具有高致病性,使用I-突变体2.0,Consurf,MutPred和希望工程。该研究的结果可用于在遗传研究的背景下优先考虑突变。
    Paired homologous domain transcription factor 2 (PITX2) is critically involved in ocular and cardiac development. Mutations in PITX2 are consistently reported in association with Axenfeld-Rieger syndrome, an autosomal dominant genetic disorder and atrial fibrillation, a common cardiac arrhythmia. In this study, we have mined missense mutations in PITX2 gene from NCBI-dbSNP and Ensembl databases, evaluated the pathogenicity of the missense variants in the homeodomain and C-terminal region using five in silico prediction tools SIFT, PolyPhen2, GERP, Mutation Assessor and CADD. Fifteen homeodomain mutations G42V, G42R, R45W, S49Y, R53W, E53D, E55V, R62H, P65S, R69H, G75R, R84G, R86K, R87W, R91P were found to be highly pathogenic by both SIFT, PolyPhen2 were further functionally characterized using I-Mutant 2.0, Consurf, MutPred and Project Hope. The findings of the study can be used for prioritizing mutations in the context of genetic studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    配对类同源结构域转录因子(HDTFs)在脊椎动物的发育中起着至关重要的作用,它们的突变与人类疾病有关。配对类HD的一个独特特征是在特定回文DNA序列上的合作二聚化。然而,HD协同二聚化在动物发育中的功能意义及其在疾病中的失调仍然难以捉摸。使用视网膜TFCone-rodHomeobox(CRX)作为模型,我们已经研究了配对的HD中导致失明的突变,p.E80A和p.K88N,改变CRX的合作二聚化,以显性方式导致基因错误表达和光感受器发育缺陷。CRXE80A在单体WTCRX基序处保持结合,但在二聚体基序处缺乏协同结合。CRXE80A的协同性缺陷影响终末分化中感光基因表达的指数增加,CrxE80A视网膜中的非功能性光感受器。CRXK88N是高度合作的,并定位到异位基因组位点,并强烈富集二聚体HD基序。CRXK88N改变的生化特性破坏了CRX在发育过程中指导动态染色质重塑的能力,以激活光感受器分化程序并沉默祖细胞程序。我们在这里的研究提供了体外和体内分子证据,表明配对类HD协同二聚化调节神经元发育和协同结合的失调会导致严重的显性致盲性视网膜病。
    Paired-class homeodomain transcription factors (HD TFs) play essential roles in vertebrate development, and their mutations are linked to human diseases. One unique feature of paired-class HD is cooperative dimerization on specific palindrome DNA sequences. Yet, the functional significance of HD cooperative dimerization in animal development and its dysregulation in diseases remain elusive. Using the retinal TF Cone-rod Homeobox (CRX) as a model, we have studied how blindness-causing mutations in the paired HD, p.E80A and p.K88N, alter CRX\'s cooperative dimerization, lead to gene misexpression and photoreceptor developmental deficits in dominant manners. CRXE80A maintains binding at monomeric WT CRX motifs but is deficient in cooperative binding at dimeric motifs. CRXE80A\'s cooperativity defect impacts the exponential increase of photoreceptor gene expression in terminal differentiation and produces immature, non-functional photoreceptors in the CrxE80A retinas. CRXK88N is highly cooperative and localizes to ectopic genomic sites with strong enrichment of dimeric HD motifs. CRXK88N\'s altered biochemical properties disrupt CRX\'s ability to direct dynamic chromatin remodeling during development to activate photoreceptor differentiation programs and silence progenitor programs. Our study here provides in vitro and in vivo molecular evidence that paired-class HD cooperative dimerization regulates neuronal development and dysregulation of cooperative binding contributes to severe dominant blinding retinopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    同源异型盒基因编码调节组织特异性分化过程的发育转录因子,并在失调时驱动癌症发生。树突状细胞(DC)是髓系免疫细胞,存在两种类型,常规或类浆细胞DC。最近,我们表明,NKL亚类同源异型盒基因VENTX的表达仅限于常规DC,调节发育基因。这里,我们鉴定并研究了在浆细胞样DC(pDC)和衍生的母细胞性浆细胞样树突状细胞肿瘤(BPDCN)中特异性表达的同源异型盒基因.我们分析了基因表达数据,进行RQ-PCR,蛋白质印迹和免疫细胞学分析,siRNA介导的敲低测定和随后的RNA测序和活细胞成像。公开基因表达数据的筛选揭示了CUT类同源异型盒基因CUX2在pDC中的限制性活性。在骨髓生成中对该同源盒基因类别的扩展分析表明,其他CUX2活性仅限于骨髓祖细胞,而BPDCN患者异常表达ONECUT2,在完整的髓系区室中保持沉默。表达ONECUT2的BPDCN细胞系CAL-1用作研究其调控和致癌活性的模型。18q21的ONECUT2基因座被IRF4,AUTS2和TNF信号重复并激活,并被BMP4-抑制,TGFb-和IL13-信号。ONECUT2的功能分析揭示了pDC分化和CDKN1C和CASP1表达的抑制,而SMAD3和EPAS1被激活。EPAS1反过来增强了在低氧条件下的存活,因此可以支持存在于低氧皮肤损伤中的树突状肿瘤细胞。总的来说,我们揭示了CUT类同源异型盒基因在包括pDCs在内的骨髓生成和BPDCN中的生理和异常活性,分别。我们的数据可能有助于BPDCN患者的诊断,并揭示这种致命恶性肿瘤的新治疗靶标。
    Homeobox genes encode developmental transcription factors regulating tissue-specific differentiation processes and drive cancerogenesis when deregulated. Dendritic cells (DCs) are myeloid immune cells occurring as two types, either conventional or plasmacytoid DCs. Recently, we showed that the expression of NKL-subclass homeobox gene VENTX is restricted to conventional DCs, regulating developmental genes. Here, we identified and investigated homeobox genes specifically expressed in plasmacytoid DCs (pDCs) and derived blastic plasmacytoid dendritic cell neoplasm (BPDCN). We analyzed gene expression data, performed RQ-PCR, protein analyses by Western blot and immuno-cytology, siRNA-mediated knockdown assays and subsequent RNA-sequencing and live-cell imaging. Screening of public gene expression data revealed restricted activity of the CUT-class homeobox gene CUX2 in pDCs. An extended analysis of this homeobox gene class in myelopoiesis showed that additional CUX2 activity was restricted to myeloid progenitors, while BPDCN patients aberrantly expressed ONECUT2, which remained silent in the complete myeloid compartment. ONECUT2 expressing BPDCN cell line CAL-1 served as a model to investigate its regulation and oncogenic activity. The ONECUT2 locus at 18q21 was duplicated and activated by IRF4, AUTS2 and TNF-signaling and repressed by BMP4-, TGFb- and IL13-signalling. Functional analyses of ONECUT2 revealed the inhibition of pDC differentiation and of CDKN1C and CASP1 expression, while SMAD3 and EPAS1 were activated. EPAS1 in turn enhanced survival under hypoxic conditions which thus may support dendritic tumor cells residing in hypoxic skin lesions. Collectively, we revealed physiological and aberrant activities of CUT-class homeobox genes in myelopoiesis including pDCs and in BPDCN, respectively. Our data may aid in the diagnosis of BPDCN patients and reveal novel therapeutic targets for this fatal malignancy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从人类多能干细胞产生确定的神经元亚型仍然是一个挑战。前神经因子NGN2已被证明可以克服通过形态发生素引导分化观察到的实验变异性,并直接将多能干细胞转化为神经元,但它们的细胞异质性尚未得到研究。这里,我们发现NGN2可重复产生三种不同类型的兴奋性神经元,其特征是其他神经递质程序的部分共激活。我们探索了两种原理方法来实现更精确的规范:对NGN2暴露于的染色质景观进行预图案化,并将NGN2与区域特异性转录因子相结合。出乎意料的是,区域化神经祖细胞的染色质背景仅轻度改变了基因组NGN2结合及其转录反应,并且不影响神经递质的规格。相比之下,诸如EMX1之类的区域特异性同源盒因子的共表达导致NGN2的急剧重新分布,包括募集到同源盒靶标,并导致谷氨酸能神经元沉默的非变性能程序。这些结果为从多能干细胞产生大量确定的神经元亚群用于治疗或疾病建模目的的改进策略的蓝图提供了分子基础。
    Generation of defined neuronal subtypes from human pluripotent stem cells remains a challenge. The proneural factor NGN2 has been shown to overcome experimental variability observed by morphogen-guided differentiation and directly converts pluripotent stem cells into neurons, but their cellular heterogeneity has not been investigated yet. Here, we found that NGN2 reproducibly produces three different kinds of excitatory neurons characterized by partial coactivation of other neurotransmitter programs. We explored two principle approaches to achieve more precise specification: prepatterning the chromatin landscape that NGN2 is exposed to and combining NGN2 with region-specific transcription factors. Unexpectedly, the chromatin context of regionalized neural progenitors only mildly altered genomic NGN2 binding and its transcriptional response and did not affect neurotransmitter specification. In contrast, coexpression of region-specific homeobox factors such as EMX1 resulted in drastic redistribution of NGN2 including recruitment to homeobox targets and resulted in glutamatergic neurons with silenced nonglutamatergic programs. These results provide the molecular basis for a blueprint for improved strategies for generating a plethora of defined neuronal subpopulations from pluripotent stem cells for therapeutic or disease-modeling purposes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脊椎动物视网膜由六种专门的神经元细胞类型和一种由常见的视网膜祖细胞产生的神经胶质组成。这些不同细胞类型的发育是由转录因子编程的,这些转录因子调节细胞命运特化和分化所必需的特定基因的表达。由于转录调控的复杂性,理解转录因子在发育和疾病中的功能是具有挑战性的。对锥杆同源盒转录因子CRX的研究为解决这些挑战提供了一个极好的模型。在这次审查中,我们回顾了25年的哺乳动物CRX研究,并讨论了阐明四种CRX编码变体类别的独特致病机制的最新进展。我们重点介绍了CRX蛋白功能的体外生化研究如何帮助理解动物模型中的CRX调控原理。最后,我们简要讨论了新兴的系统生物学方法,这些方法可以加速CRX相关疾病及其他疾病的精准医学。
    The vertebrate retina is made up of six specialized neuronal cell types and one glia that are generated from a common retinal progenitor. The development of these distinct cell types is programmed by transcription factors that regulate the expression of specific genes essential for cell fate specification and differentiation. Because of the complex nature of transcriptional regulation, understanding transcription factor functions in development and disease is challenging. Research on the Cone-rod homeobox transcription factor CRX provides an excellent model to address these challenges. In this review, we reflect on 25 years of mammalian CRX research and discuss recent progress in elucidating the distinct pathogenic mechanisms of four CRX coding variant classes. We highlight how in vitro biochemical studies of CRX protein functions facilitate understanding CRX regulatory principles in animal models. We conclude with a brief discussion of the emerging systems biology approaches that could accelerate precision medicine for CRX-linked diseases and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    转录因子(TF)可以定义不同的细胞身份,尽管几乎相同的DNA结合特异性。实现调节特异性的一种机制是DNA引导的TF协同性。尽管体外研究表明这可能很常见,这种合作的例子在细胞环境中仍然很少。这里,我们演示了“协调员,“由许多基本螺旋-环-螺旋(bHLH)和同源结构域(HD)TF结合的共同基序组成的长DNA基序,独特地定义了胚胎面部和肢体间充质的调节区域。协调员指导bHLH家族间充质调节因子TWIST1和一组与面部和肢体区域身份相关的HD因子之间的合作和选择性结合。TWIST1是HD结合和在协调位点开放染色质所必需的,而HD因子在协调员处稳定TWIST1占用率,并将其从独立于HD的站点滴定。这种协同作用导致参与细胞类型和位置身份的基因的共同调节,并最终塑造面部形态和进化。
    Transcription factors (TFs) can define distinct cellular identities despite nearly identical DNA-binding specificities. One mechanism for achieving regulatory specificity is DNA-guided TF cooperativity. Although in vitro studies suggest that it may be common, examples of such cooperativity remain scarce in cellular contexts. Here, we demonstrate how \"Coordinator,\" a long DNA motif composed of common motifs bound by many basic helix-loop-helix (bHLH) and homeodomain (HD) TFs, uniquely defines the regulatory regions of embryonic face and limb mesenchyme. Coordinator guides cooperative and selective binding between the bHLH family mesenchymal regulator TWIST1 and a collective of HD factors associated with regional identities in the face and limb. TWIST1 is required for HD binding and open chromatin at Coordinator sites, whereas HD factors stabilize TWIST1 occupancy at Coordinator and titrate it away from HD-independent sites. This cooperativity results in the shared regulation of genes involved in cell-type and positional identities and ultimately shapes facial morphology and evolution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Notch信号是一种进化上保守的途径,用于指定二元神经元的命运,然而,它如何在不同的背景下指定不同的命运仍然难以捉摸。在我们的论文中,使用果蝇层神经元类型(L1-L5)作为模型,我们显示初级同源域转录因子(HDTF)Bsh激活次级HDTFsAp(L4)和Pdm3(L5),并指定L4/L5神经元命运。在这里,我们测试了Notch信号使Bsh能够区分指定L4和L5命运的假设。我们显示了新生L4和L5神经元之间的不对称Notch信号,但他们不是兄弟姐妹,L4中的Notch信号传导是由于相邻L1神经元中的Delta表达。虽然Notch信号和Bsh表达是相互独立的,陷波对于Bsh指定L5上的L4命运是必要且足够的。与NotchOFFL5相比,NotchONL4具有独特的开放染色质景观,允许Bsh结合不同的基因组基因座,导致L4特异性身份基因转录。我们提出了一种新的模型,其中Notch信号与初级HDTF活性整合,通过直接或间接产生独特的开放染色质景观来使神经元类型多样化,从而限制初级HDTF可以激活的基因库。
    Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们的大脑如何产生不同类型的神经元并组装成精确的神经回路尚不清楚。使用果蝇层神经元类型(L1-L5),我们表明,初级同源结构域转录因子(HDTF)脑特异性同源盒(Bsh)在祖细胞中启动,并在L4/L5神经元中维持到成年。Bsh激活次级HDTFAp(L4)和Pdm3(L5)并指定L4/L5神经元命运,同时抑制HDTFZfh1以防止异位L1/L3命运(对照:L1-L5;Bsh敲除:L1-L3),从而产生正常视觉敏感性的椎板神经元多样性。随后,在L4神经元中,Bsh和Ap在前馈回路中起作用,以激活突触识别分子DIP-β,从而桥接神经元命运决定与突触连接。Bsh的表达式:大坝,特别是在L4中,揭示了Bsh与DIP-β基因座和其他候选L4功能同一性基因的结合。我们建议HDTF分层功能来协调神经元分子同一性,电路形成,和功能。分层HDTF可以代表用于将神经元多样性链接到电路组装和功能的保守机制。
    How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-β, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-β locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号