heart morphogenesis

心脏形态发生
  • 文章类型: Journal Article
    心脏发育的传统描述涉及从心脏新月到线性心脏管的进展,在转化为成熟心脏的阶段,它形成了一个心脏回路,并与隔膜一起分为单个腔。心脏形态发生涉及许多类型的细胞起源于最初的心脏新月,包括神经嵴细胞,第二心脏区域起源的细胞,和心外膜祖细胞。胎儿心脏和循环系统的发育受遗传和环境过程的调节。先天性心脏病(CHD)的病因尚不清楚,但是一些遗传异常,一些产妇疾病,产前暴露于特定治疗和非治疗药物通常被认为是危险因素。研究心脏发育的新技术揭示了心脏形态发生的许多方面,这些方面在CHD的发展中很重要,特别是大动脉移位。
    The traditional description of cardiac development involves progression from a cardiac crescent to a linear heart tube, which in the phase of transformation into a mature heart forms a cardiac loop and is divided with the septa into individual cavities. Cardiac morphogenesis involves numerous types of cells originating outside the initial cardiac crescent, including neural crest cells, cells of the second heart field origin, and epicardial progenitor cells. The development of the fetal heart and circulatory system is subject to regulatation by both genetic and environmental processes. The etiology for cases with congenital heart defects (CHDs) is largely unknown, but several genetic anomalies, some maternal illnesses, and prenatal exposures to specific therapeutic and non-therapeutic drugs are generally accepted as risk factors. New techniques for studying heart development have revealed many aspects of cardiac morphogenesis that are important in the development of CHDs, in particular transposition of the great arteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管他们的负担,大多数先天性缺陷仍然知之甚少,由于缺乏胚胎机制的知识。这里,我们将Greb1l突变体鉴定为十字交叉心脏的小鼠模型。基于形状变化的3D量化,我们证明,在心脏循环后,房室管的扭转与E10.5的超下心室一起发生。维甲酸信号的突变体表型部分缺乏,反映了心脏前体的重叠通路。时空基因图谱和交叉相关转录组学分析进一步揭示了Greb1l在心脏管伸长过程中维持心包壁前体细胞的作用,可能通过控制核糖体生物发生和细胞分化。因此,我们观察到流出道的生长停滞和错位,可以预测突变体中异常的管重塑。我们对罕见心脏畸形的研究为人类GREB1L相关的更广泛的先天性缺陷的起源开辟了新的视角。
    Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    心脏形态发生是一个复杂而动态的过程,吸引了研究人员近一个世纪。这个过程包括三个主要阶段,在此期间,心脏经历生长和折叠,形成其共同的腔形。然而,由于心脏形态的快速和动态变化,成像心脏发育提出了重大挑战。研究人员已经使用了不同的模型生物,并开发了各种成像技术来获得心脏发育的高分辨率图像。先进的成像技术允许将多尺度实时成像方法与遗传标记相结合,能够定量分析心脏形态发生。这里,我们讨论了用于获得全心发育高分辨率图像的各种成像技术。我们还回顾了用于从3D和3D时间图像中量化心脏形态发生并在组织和细胞水平上对其动力学进行建模的数学方法。
    Heart morphogenesis is a complex and dynamic process that has captivated researchers for almost a century. This process involves three main stages, during which the heart undergoes growth and folding on itself to form its common chambered shape. However, imaging heart development presents significant challenges due to the rapid and dynamic changes in heart morphology. Researchers have used different model organisms and developed various imaging techniques to obtain high-resolution images of heart development. Advanced imaging techniques have allowed the integration of multiscale live imaging approaches with genetic labeling, enabling the quantitative analysis of cardiac morphogenesis. Here, we discuss the various imaging techniques used to obtain high-resolution images of whole-heart development. We also review the mathematical approaches used to quantify cardiac morphogenesis from 3D and 3D+time images and to model its dynamics at the tissue and cellular levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管有关于不同基因的大量信息,表观遗传,和心脏发生的分子特征,先天性心脏缺陷的起源仍然未知。大多数遗传和分子研究都是在胚胎心脏进行性解剖和组织学变化的背景下进行的,这是对先天性心脏病起源知识有限的原因之一。我们整合了对人类胚胎的描述性研究和对小鸡的实验研究的结果,rat,小鼠胚胎本研究基于心脏发展的新动态概念和两个心脏领域的存在。第一个字段对应于直心管,来自第二心脏区域的内脏中胚层细胞逐渐被招募到其中。总体目标是为分析创造一个新的愿景,诊断,心脏和大动脉先天性缺陷的区域化分类。除了强调遗传因素在先天性心脏病发展中的重要性,这项研究为直心管的组成提供了新的见解,扭曲和折叠的过程,以及右心室及其流出道发育过程中圆锥的命运。新的愿景,基于体内标记和细胞追踪,并通过类细胞和类器官等模型增强,有助于更好地理解心脏形态发生中的重要错误,这可能会导致几种先天性心脏病。
    Despite the extensive information available on the different genetic, epigenetic, and molecular features of cardiogenesis, the origin of congenital heart defects remains unknown. Most genetic and molecular studies have been conducted outside the context of the progressive anatomical and histological changes in the embryonic heart, which is one of the reasons for the limited knowledge of the origins of congenital heart diseases. We integrated the findings of descriptive studies on human embryos and experimental studies on chick, rat, and mouse embryos. This research is based on the new dynamic concept of heart development and the existence of two heart fields. The first field corresponds to the straight heart tube, into which splanchnic mesodermal cells from the second heart field are gradually recruited. The overall aim was to create a new vision for the analysis, diagnosis, and regionalized classification of congenital defects of the heart and great arteries. In addition to highlighting the importance of genetic factors in the development of congenital heart disease, this study provides new insights into the composition of the straight heart tube, the processes of twisting and folding, and the fate of the conus in the development of the right ventricle and its outflow tract. The new vision, based on in vivo labeling and cell tracking and enhanced by models such as gastruloids and organoids, has contributed to a better understanding of important errors in cardiac morphogenesis, which may lead to several congenital heart diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    从光学相干断层扫描收集的结构和多普勒速度数据已经为心脏形态发生提供了重要的见解。X射线显微断层扫描和其他离体方法已经阐明了发育中的心脏的结构细节。然而,本身,没有单一的成像模式可以提供全面的信息,从而完全破译整个发育器官的内部运作。因此,我们介绍了一种结合OCT和micro-CT成像的标本特异性相关多模态成像工作流程,该工作流程适用于早期雏鸡心脏发育的建模-这是心血管发育研究中的一种有价值的模型生物.图像采集和处理采用普通试剂,基于实验室的显微CT成像,和免费供学术使用的软件。我们的目标是提供有关如何实施此工作流程的分步指南,并说明为什么这两种模式一起有可能为导致先天性心脏病的正常心脏发育和心脏畸形提供新的见解。
    Structural and Doppler velocity data collected from optical coherence tomography have already provided crucial insights into cardiac morphogenesis. X-ray microtomography and other ex vivo methods have elucidated structural details of developing hearts. However, by itself, no single imaging modality can provide comprehensive information allowing to fully decipher the inner workings of an entire developing organ. Hence, we introduce a specimen-specific correlative multimodal imaging workflow combining OCT and micro-CT imaging which is applicable for modeling of early chick heart development-a valuable model organism in cardiovascular development research. The image acquisition and processing employ common reagents, lab-based micro-CT imaging, and software that is free for academic use. Our goal is to provide a step-by-step guide on how to implement this workflow and to demonstrate why those two modalities together have the potential to provide new insight into normal cardiac development and heart malformations leading to congenital heart disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    先天性心脏病是最常见的出生缺陷,也是胎儿和生命第一年死亡的主要原因。先天性心脏缺陷的广泛表型多样性需要专家诊断和复杂的修复手术。尽管这些缺陷在十七世纪就已被描述过,直到2005年才通过了协商一致的国际术语,随后在2017年进行了国际分类,以帮助提供更好的患者管理。基因工程的进展,成像,和组学分析揭示了动物模型中心脏形成和畸形的机制,但是大约80%的先天性心脏缺陷有未知的遗传起源。这里,我们总结了先天性结构性心脏缺陷的现有知识,相互交织的临床和基础研究观点,旨在促进每个领域前沿的跨学科合作。我们还讨论了在更好地了解先天性心脏缺陷和为患者提供益处方面仍然存在的挑战。
    Congenital heart disease is the most frequent birth defect and the leading cause of death for the fetus and in the first year of life. The wide phenotypic diversity of congenital heart defects requires expert diagnosis and sophisticated repair surgery. Although these defects have been described since the seventeenth century, it was only in 2005 that a consensus international nomenclature was adopted, followed by an international classification in 2017 to help provide better management of patients. Advances in genetic engineering, imaging, and omics analyses have uncovered mechanisms of heart formation and malformation in animal models, but approximately 80% of congenital heart defects have an unknown genetic origin. Here, we summarize current knowledge of congenital structural heart defects, intertwining clinical and fundamental research perspectives, with the aim to foster interdisciplinary collaborations at the cutting edge of each field. We also discuss remaining challenges in better understanding congenital heart defects and providing benefits to patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脊椎动物的心脏发育需要线性管的复杂形态发生才能形成成熟的器官,对正确的心脏形态和功能至关重要的过程,需要协调胚胎侧向性,心脏生长,和区域化的细胞变化。虽然先前的研究已经证明了心脏形态发生中对细胞外基质(ECM)成分的广泛要求,我们假设ECM区域化可以在心脏发育过程中微调心脏形状.
    使用斑马鱼胚胎的活体光片成像,我们描述了在心脏循环和腔室膨胀开始之前,ECM在心肌和心内膜之间的左侧扩张。使用ECM传感器的分析显示心脏ECM沿房室轴进一步区域化。心脏管中基因表达的空间转录组学分析鉴定了可能驱动ECM扩增的候选基因。这种方法确定了hapln1a的区域化表达,编码ECM交联蛋白。通过原位杂交对转录组数据的验证证实了心脏中区域化的hapln1a表达,在未来的心房和管的左侧表达水平最高,与观察到的ECM扩展重叠。对CRISPR-Cas9产生的hapln1a突变体的分析揭示了心房大小的减少和腔室膨胀的减少。功能损失分析表明,ECM扩展依赖于Hapln1a,共同支持Hapln1a在区域化ECM调节和心脏形态发生中的作用。对随机或不存在胚胎左右不对称性的斑马鱼突变体中hapln1a表达的分析显示,侧向性提示在心脏管的左侧不对称地定位hapln1a表达细胞。
    我们确定了心脏管中区域化的ECM扩张,可促进正确的心脏发育,并提出了一种新的模型,通过该模型,胚胎侧向性线索将心脏中ECM不对称性的轴定向,这两个途径相互作用,促进强大的心脏形态发生。
    Vertebrate heart development requires the complex morphogenesis of a linear tube to form the mature organ, a process essential for correct cardiac form and function, requiring coordination of embryonic laterality, cardiac growth, and regionalized cellular changes. While previous studies have demonstrated broad requirements for extracellular matrix (ECM) components in cardiac morphogenesis, we hypothesized that ECM regionalization may fine tune cardiac shape during heart development.
    Using live in vivo light sheet imaging of zebrafish embryos, we describe a left-sided expansion of the ECM between the myocardium and endocardium prior to the onset of heart looping and chamber ballooning. Analysis using an ECM sensor revealed the cardiac ECM is further regionalized along the atrioventricular axis. Spatial transcriptomic analysis of gene expression in the heart tube identified candidate genes that may drive ECM expansion. This approach identified regionalized expression of hapln1a, encoding an ECM cross-linking protein. Validation of transcriptomic data by in situ hybridization confirmed regionalized hapln1a expression in the heart, with highest levels of expression in the future atrium and on the left side of the tube, overlapping with the observed ECM expansion. Analysis of CRISPR-Cas9-generated hapln1a mutants revealed a reduction in atrial size and reduced chamber ballooning. Loss-of-function analysis demonstrated that ECM expansion is dependent upon Hapln1a, together supporting a role for Hapln1a in regionalized ECM modulation and cardiac morphogenesis. Analysis of hapln1a expression in zebrafish mutants with randomized or absent embryonic left-right asymmetry revealed that laterality cues position hapln1a-expressing cells asymmetrically in the left side of the heart tube.
    We identify a regionalized ECM expansion in the heart tube which promotes correct heart development, and propose a novel model whereby embryonic laterality cues orient the axis of ECM asymmetry in the heart, suggesting these two pathways interact to promote robust cardiac morphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cohesin介导姐妹染色单体内聚力和3D基因组折叠。携带STAG1或STAG2的复合物的两个版本在体脊椎动物细胞中共存。STAG2通常在癌症中突变,并且已经在粘附分子病患者中发现了种系突变。为了更好地了解潜在的致病机制,我们报道了Stag2消融在小鼠中的后果。STAG2在成年人中很大程度上是可有可无的,并且其组织范围的失活不会导致肿瘤,但会降低适应性并影响造血和肠道稳态。STAG2对于体外鼠胚胎成纤维细胞也是可有可无的。相比之下,Stag2-null胚胎在妊娠中期死亡,并显示出整体发育延迟和有缺陷的心脏形态发生,最突出的是来自次级心脏场祖细胞的结构。组织特异性基因的增殖减少和转录改变都会导致这些缺陷。我们的结果提供了令人信服的证据,证明了不同粘附素复合物的细胞和组织特异性作用以及它们的功能障碍如何导致疾病。
    Cohesin mediates sister chromatid cohesion and 3D genome folding. Two versions of the complex carrying STAG1 or STAG2 coexist in somatic vertebrate cells. STAG2 is commonly mutated in cancer, and germline mutations have been identified in cohesinopathy patients. To better understand the underlying pathogenic mechanisms, we report the consequences of Stag2 ablation in mice. STAG2 is largely dispensable in adults, and its tissue-wide inactivation does not lead to tumors but reduces fitness and affects both hematopoiesis and intestinal homeostasis. STAG2 is also dispensable for murine embryonic fibroblasts in vitro. In contrast, Stag2-null embryos die by mid-gestation and show global developmental delay and defective heart morphogenesis, most prominently in structures derived from secondary heart field progenitors. Both decreased proliferation and altered transcription of tissue-specific genes contribute to these defects. Our results provide compelling evidence on cell- and tissue-specific roles of different cohesin complexes and how their dysfunction contributes to disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    动态成像是评估发育中器官系统功能的有力方法。心脏是一个动态器官,通过早期胚胎发育经历快速的形态和机械变化。定义胚胎小鼠心脏的正常功能对于我们对人类心脏发育的理解很重要,并将为我们提供有关先天性心脏病(CHD)的治疗和预防的信息。传统的方法,如超声或荧光显微镜适用于实时动态成像,能很好地可视化结构并将基因表达与表型联系起来,但在分辨精细特征方面可能是低质量的,并且缺乏成像深度和规模来充分了解器官形态发生。此外,先前的方法在容纳能够长时间维持整个胚胎发育的实况成像装置方面可能受到限制。光学相干断层扫描(OCT)在这种情况下是独一无二的,因为在没有造影剂的情况下采集三维图像,在单细胞分辨率下,使其成为可视化发育中胚胎中精细结构的合适方式。OCT设置是高度可定制的实时成像,因为成像臂系留,由于其设置为基于光纤的干涉仪。OCT可以对小鼠胚胎进行4D(3D+时间)功能成像,并可以提供功能和机械信息,以确定心脏泵功能如何在发育过程中发生变化。在这一章中,我们将重点介绍如何使用OCT可视化不同发育阶段的实时心脏动力学,并提供机械信息以揭示发育中心脏的功能特性。
    Dynamic imaging is a powerful approach to assess the function of a developing organ system. The heart is a dynamic organ that undergoes quick morphological and mechanical changes through early embryonic development. Defining the embyonic mouse heart\'s normal function is important for our own understanding of human heart development and will inform us on treatments and prevention of congenital heart defects (CHD). Traditional methods such as ultrasound or fluorescence-based microscopy are suitable for live dynamic imaging, are excellent to visualize structure and connect gene expression to phenotypes, but can be of low quality in resolving fine features and lack imaging depth and scale to fully appreciate organ morphogenesis. Additionally, previous methods can be limited in accommodating a live imaging apparatus capable of sustaining whole embryo development for extended periods time. Optical coherence tomography (OCT) is unique in this circumstance because acquisition of three-dimensional images without contrast reagents, at single cell resolution make it a suitable modality to visualize fine structures in the developing embryo. OCT setups are highly customizable for live imaging because of the tethered imaging arm, due to its setup as a fiber-based interferometer. OCT allows for 4D (3D + time) functional imaging of living mouse embryos and can provide functional and mechanical information to ascertain how the heart\'s pump function changes through development. In this chapter, we will focus on how we use OCT to visualize live heart dynamics at different stages of development and provide mechanical information to reveal functional properties of the developing heart.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号