glycoproteomics

糖蛋白质组学
  • 文章类型: Journal Article
    蛋白质糖基化,生物标志物发现中最重要的生物学相关翻译后修饰之一,由于异质糖位而面临分析挑战,多样化的聚糖,和质谱限制。通过去除丰富的疏水肽来富集糖肽有助于克服这些障碍中的一些。亲水相互作用液相色谱(HILIC),以其选择性而闻名,聚糖分离,完整的糖肽富集,以及与质谱的兼容性,已经看到了固定相的最新进展,如酰胺-80,糖基化,用于改进基于HILIC的糖肽分析的氨基酸或肽。利用这些材料可以通过固相萃取和高效液相色谱分离来提高糖肽的富集。此外,使用糖肽本身修饰HILIC固定相有望提高糖基化分析的选择性和灵敏度。此外,HILIC具有评估关于聚糖的糖位点和结构信息的信息的能力。这篇综述总结了HILIC固定材料的最新突破,强调它们对糖肽分析的影响。对先进材料的持续研究不断改进HILIC的性能,巩固其作为探索蛋白质糖基化的工具的价值。
    Protein glycosylation, one of the most important biologically relevant post-translational modifications for biomarker discovery, faces analytical challenges due to heterogeneous glycosite, diverse glycans, and mass spectrometry limitations. Glycopeptide enrichment by removing abundant hydrophobic peptides helps overcome some of these obstacles. Hydrophilic interaction liquid chromatography (HILIC), known for its selectivity, glycan separations, intact glycopeptide enrichment, and compatibility with mass spectrometry, has seen recent advancements in stationary phases like Amide-80, glycoHILIC, amino acids or peptides for improved HILIC-based glycopeptide analysis. Utilization of these materials can improve glycopeptide enrichment through solid-phase extraction and separation via high-performance liquid chromatography. Additionally, using glycopeptides themselves to modify HILIC stationary phases holds promise for improving selectivity and sensitivity in glycosylation analysis. Additionally, HILIC has capability to assess the information about glycosites and structural information of glycans. This review summarizes recent breakthroughs in HILIC stationary materials, highlighting their impact on glycopeptide analysis. Ongoing research on advanced materials continues to refine HILIC\'s performance, solidifying its value as a tool for exploring protein glycosylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高通量完整糖肽分析对于阐明与每种糖蛋白连接的聚糖的生理和病理状态至关重要。基于质谱的糖蛋白质组学方法由于聚糖结构的多样性和异质性而具有挑战性。因此,为了更全面的分析,我们开发了一种基于MS1的位点特异性糖型分析方法,命名为“基于聚糖异质性的洗脱谱上糖肽信号的相关识别(Glyco-RIDGE)”。该方法基于糖肽的质量和色谱特性将糖肽信号检测为簇,然后通过匹配其质量和保留时间差来搜索核心肽和聚糖组成的每种组合。这里,我们开发了一种新颖的基于浏览器的软件,名为GRable,用于半自动化Glyco-RIDGE分析,在糖肽检测算法方面有显著改进,包括“并行集群”。“这种独特的功能提高了糖肽检测的全面性,并使分析专注于特定的聚糖结构,例如pauci-甘露糖。另一个值得注意的改进是评估GRable结果的“置信水平”,特别是使用MS2信息。该功能促进了核心肽和聚糖组合物的减少的错配并改善了结果的解释。算法的其他改进点是“校正函数”,用于准确的单同位素峰选择;即使对于多个唾液酸化糖肽,簇和核心肽的一一对应关系;以及“簇间分析”功能,用于了解检测到但不匹配的簇的原因。使用纯化和粗糖蛋白样品证明了这些改进的重要性,显示GRable允许大规模和深入地对完整唾液酸化糖蛋白进行位点特异性糖型分析。因此,该软件将通过补充基于MS2的糖蛋白质组学的全面性,帮助我们分析聚糖的状态和变化,从而获得对蛋白质糖基化的生物学和临床见解。GRable可以通过GlyCosmosPortal(https://glysmos.org/grable)使用Web浏览器在线自由运行。
    High-throughput intact glycopeptide analysis is crucial for elucidating the physiological and pathological status of the glycans attached to each glycoprotein. Mass spectrometry-based glycoproteomic methods are challenging because of the diversity and heterogeneity of glycan structures. Therefore, we developed an MS1-based site-specific glycoform analysis method named \"Glycan heterogeneity-based Relational IDentification of Glycopeptide signals on Elution profile (Glyco-RIDGE)\" for a more comprehensive analysis. This method detects glycopeptide signals as a cluster based on the mass and chromatographic properties of glycopeptides and then searches for each combination of core peptides and glycan compositions by matching their mass and retention time differences. Here, we developed a novel browser-based software named GRable for semi-automated Glyco-RIDGE analysis with significant improvements in glycopeptide detection algorithms, including \"parallel clustering.\" This unique function improved the comprehensiveness of glycopeptide detection and allowed the analysis to focus on specific glycan structures, such as pauci-mannose. The other notable improvement is evaluating the \"confidence level\" of the GRable results, especially using MS2 information. This function facilitated reduced misassignment of the core peptide and glycan composition and improved the interpretation of the results. Additional improved points of the algorithms are \"correction function\" for accurate monoisotopic peak picking; one-to-one correspondence of clusters and core peptides even for multiply sialylated glycopeptides; and \"inter-cluster analysis\" function for understanding the reason for detected but unmatched clusters. The significance of these improvements was demonstrated using purified and crude glycoprotein samples, showing that GRable allowed site-specific glycoform analysis of intact sialylated glycoproteins on a large-scale and in-depth. Therefore, this software will help us analyze the status and changes in glycans to obtain biological and clinical insights into protein glycosylation by complementing the comprehensiveness of MS2-based glycoproteomics. GRable can be freely run online using a web browser via the GlyCosmos Portal (https://glycosmos.org/grable).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质糖基化是蛋白质与寡糖(聚糖)的共翻译和/或翻译后修饰。该过程不是基于模板的,并且可以将一组异质的聚糖修饰引入到底物蛋白上。聚糖结构保留了来自细胞的生物分子信息,来自不同细胞类型和组织的糖蛋白显示不同的糖基化模式。几十年的研究表明,聚糖结构在正常生理和疾病之间也有所不同。这表明存储在糖蛋白和聚糖中的信息可用于疾病诊断和监测。能够在临床环境中对蛋白质糖基化进行灵敏和位点特异性测量的方法,如纳米流动液相色谱串联质谱,因此是必不可少的。这种观点的目的是讨论质谱的最新进展以及这些进展促进疾病特异性糖蛋白糖型的检测和监测的潜力。糖蛋白质组学,糖蛋白身份的全系统表征,包括蛋白质上碳水化合物修饰的位点特异性表征,和糖组学,聚糖结构的表征,将在这种情况下进行讨论。重点介绍了通过平行反应监测对糖肽标志物的定量测量。开发有前途的糖肽标志物用于自身免疫性疾病,肝病,讨论了肝癌。合成糖肽标准,环境电离质谱,并且考虑组织内的二维和三维空间中的糖生物标志物对于该领域的发展将是至关重要的。作者设想了糖蛋白质谱工作流程将被整合到临床环境中的未来。以帮助快速诊断和监测疾病。
    Protein glycosylation is the co- and/or post-translational modification of proteins with oligosaccharides (glycans). This process is not template based and can introduce a heterogeneous set of glycan modifications onto substrate proteins. Glycan structures preserve biomolecular information from the cell, with glycoproteins from different cell types and tissues displaying distinct patterns of glycosylation. Several decades of research have revealed that glycan structures also differ between normal physiology and disease. This suggests that the information stored in glycoproteins and glycans can be utilized for disease diagnosis and monitoring. Methods that enable sensitive and site-specific measurement of protein glycosylation in clinical settings, such as nano-flow liquid chromatography tandem mass spectrometry, are therefore essential. The purpose of this perspective is to discuss recent advances in mass spectrometry and the potential of these advances to facilitate the detection and monitoring of disease-specific glycoprotein glycoforms. Glycoproteomics, the system-wide characterization of glycoprotein identity inclusive of site-specific characterization of carbohydrate modifications on proteins, and glycomics, the characterization of glycan structures, will be discussed in this context. Quantitative measurement of glycopeptide markers via parallel reaction monitoring is highlighted. The development of promising glycopeptide markers for autoimmune disease, liver disease, and liver cancer is discussed. Synthetic glycopeptide standards, ambient ionization mass spectrometry, and consideration of glyco-biomarkers in two- and three-dimensional space within tissue will be critical to the advancement of this field. The authors envision a future in which glycoprotein mass spectrometry workflows will be integrated into clinical settings, to aid in the rapid diagnosis and monitoring of disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    N-连接糖基化是蛋白质的常见翻译后修饰,其导致修饰位点的宏观异质性。然而,与更简单的修改不同,N-糖基化引入了额外的复杂层,具有成千上万个可能的结构,来自各个维度,包括不同的单糖成分,序列结构,连接结构,异构现象,和三维构造。这导致N-糖基化修饰位点的额外微异质性,即,相同的N-糖基化位点可以用具有一定化学计量比的不同聚糖修饰。N-糖基化以位点和结构特异性方式调节N-糖蛋白的结构和功能,需要通过位点和结构特异性定量分析来表征疾病条件下N-糖基化的差异表达。已经开发了从样品制备到质谱分析的许多先进方法来区分N-聚糖结构。单糖的化学衍生化,在线液相色谱分离和离子迁移谱使样品的物理区分。串联质谱法通过分析碎片离子进一步分析完整N-糖肽的宏观/微观异质性。此外,搜索引擎和基于AI的软件的开发增强了我们对完整N-糖肽的解离模式以及差异表达的完整N-糖肽的临床意义的理解.在这些现代方法的帮助下,结构特异性的N-糖蛋白质组学已成为生物医学领域广泛应用的重要工具。
    N-linked glycosylation is a common posttranslational modification of proteins that results in macroheterogeneity of the modification site. However, unlike simpler modifications, N-glycosylation introduces an additional layer of complexity with tens of thousands of possible structures arising from various dimensions, including different monosaccharide compositions, sequence structures, linking structures, isomerism, and three-dimensional conformations. This results in additional microheterogeneity of the modification site of N-glycosylation, i.e., the same N-glycosylation site can be modified with different glycans with a certain stoichiometric ratio. N-glycosylation regulates the structure and function of N-glycoproteins in a site- and structure-specific manner, and differential expression of N-glycosylation under disease conditions needs to be characterized through site- and structure-specific quantitative analysis. Numerous advanced methods ranging from sample preparation to mass spectrum analysis have been developed to distinguish N-glycan structures. Chemical derivatization of monosaccharides, online liquid chromatography separation and ion mobility spectrometry enable the physical differentiation of samples. Tandem mass spectrometry further analyzes the macro/microheterogeneity of intact N-glycopeptides through the analysis of fragment ions. Moreover, the development of search engines and AI-based software has enhanced our understanding of the dissociation patterns of intact N-glycopeptides and the clinical significance of differentially expressed intact N-glycopeptides. With the help of these modern methods, structure-specific N-glycoproteomics has become an important tool with extensive applications in the biomedical field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    α-乳白蛋白,大多数哺乳动物的乳汁中含有丰富的蛋白质,与生物有关,营养和技术功能。它的序列呈现N-糖基化基序,其占用是特定于物种的,从没有到完全占用。这里,我们调查了牛α-乳清蛋白在初乳和从四头奶牛取样的牛奶中的N-糖基化,每个在9个时间点从产牛当天开始到产后28.0d。使用以糖肽为中心的基于质谱的糖蛋白质组学方法,我们鉴定了在经典Asn-Xxx-Ser/Thr基序中发现的两个Asn残基上的N-糖基化,即分泌蛋白的Asn45和Asn74。我们在所有四头母牛中发现了相似的聚糖谱,部分现场占用,Asn45和Asn74的平均值分别为35%和4%。在这两个地点,哺乳期的入住率均未发生实质性变化。岩藻糖基化,唾液酸化,主要与N-乙酰神经氨酸(Neu5Ac),和高比例的N,N'-二乙酰基乳糖胺(LacdiNAc)/N-乙酰基乳糖胺(LacNAc)基序是已鉴定的N-聚糖的特征。虽然哺乳期间任何一个站点的站点占用都没有发生实质性变化,糖蛋白形式(即蛋白质的糖基化形式)谱显示出动态变化;从初乳到成熟乳的α-乳白蛋白糖蛋白形式库的成熟以中性聚糖和每个聚糖的LacNAc基序数量的大幅增加为标志,以牺牲LacdiNAc基序为代价。虽然α-乳清蛋白N-糖基化对功能性的影响尚不清楚,我们推测Asn74的N-糖基化导致结构和功能不同的蛋白质,由于与形成两个分子内二硫键的竞争。
    α -Lactalbumin, an abundant protein present in the milk of most mammals, is associated with biological, nutritional and technological functionality. Its sequence presents N-glycosylation motifs, the occupancy of which is species-specific, ranging from no to full occupancy. Here, we investigated the N-glycosylation of bovine α-lactalbumin in colostrum and milk sampled from four individual cows, each at 9 time points starting from the day of calving up to 28.0 d post-partum. Using a glycopeptide-centric mass spectrometry-based glycoproteomics approach, we identified N-glycosylation at both Asn residues found in the canonical Asn-Xxx-Ser/Thr motif, i.e. Asn45 and Asn74 of the secreted protein. We found similar glycan profiles in all four cows, with partial site occupancies, averaging at 35% and 4% for Asn45 and Asn74, respectively. No substantial changes in occupancy occurred over lactation at either site. Fucosylation, sialylation, primarily with N-acetylneuraminic acid (Neu5Ac), and a high ratio of N,N\'-diacetyllactosamine (LacdiNAc)/N-acetyllactosamine (LacNAc) motifs were characteristic features of the identified N-glycans. While no substantial changes occurred in site occupancy at either site during lactation, the glycoproteoform (i.e. glycosylated form of the protein) profile revealed dynamic changes; the maturation of the α-lactalbumin glycoproteoform repertoire from colostrum to mature milk was marked by substantial increases in neutral glycans and the number of LacNAc motifs per glycan, at the expense of LacdiNAc motifs. While the implications of α-lactalbumin N-glycosylation on functionality are still unclear, we speculate that N-glycosylation at Asn74 results in a structurally and functionally different protein, due to competition with the formation of its two intra-molecular disulphide bridges.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类糖蛋白地图集(HGA)项目于2023年4月启动,由三个日本机构牵头:东海国家高等教育和研究系统,美国国立自然科学研究所,和索卡大学。这是教育部首次采用生命科学领域,文化,体育,科学技术(MEXT)大型学术前沿推广项目。该项目旨在构建人类聚糖和糖蛋白的知识库,作为人类糖的标准。计划在第一个五年内建立一条高通量管道,用于全面分析20,000个血液样本,在这个时候,人类糖组学知识库的访问控制版本,叫做TOHSA,将被释放。到最后十年结束时,TOHSA将提供一个中心资源,将人类聚糖数据与其他组学数据(包括疾病相关信息)联系起来。
    The Human Glycome Atlas (HGA) Project was launched in April 2023, spearheaded by three Japanese institutes: the Tokai National Higher Education and Research System, the National Institutes of Natural Sciences, and Soka University. This was the first time that a field in the life sciences was adopted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for a Large-scale Academic Frontiers Promotion Project. This project aims to construct a knowledgebase of human glycans and glycoproteins as a standard for the human glycome. A high-throughput pipeline for comprehensively analyzing 20,000 blood samples in its first five years is planned, at which time an access-controlled version of a human glycomics knowledgebase, called TOHSA, will be released. By the end of the final tenth year, TOHSA will provide a central resource linking human glycan data with other omics data including disease-related information.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    概述了糖基化在前列腺癌(PCa)发展和进展中的作用,重点介绍通过糖组学和糖蛋白质组学方法定义N-糖的最新进展。糖基化是一种常见的翻译后修饰,典型的是在载体蛋白上与天冬酰胺N-连接或与丝氨酸或苏氨酸O-连接的寡糖。这些附着的糖在蛋白质折叠和细胞识别过程中起着至关重要的作用,这样改变的糖基化是癌症发病机制和进展的标志。在过去的十年里,使用基质辅助激光解吸/电离质谱成像(MALDI-MSI)技术的N-聚糖分析工作流程的进步已用于定义PCa组织中聚糖的空间分布。将N-聚糖MALDI-MSI应用于病理定义的PCa组织的多项研究已经鉴定了与PCa进展相关的N-聚糖谱的显著改变。N-聚糖组合物数量逐渐增加,以及由于岩藻糖基化和唾液酸化增加而导致的结构复杂性。此外,在定义组织和生物流体中前列腺特异性抗原等前列腺衍生糖蛋白的聚糖和糖肽组成方面已经取得了重大进展。参与这些变化的糖基转移酶是PCa的潜在药物靶标,并总结了这方面的新方法。这些进展将在靶向与PCa进展相关的聚糖和糖蛋白的临床诊断和治疗的进一步发展的背景下进行讨论。现在,在组织和单细胞水平上,将PCa的大规模空间糖数据与其他空间组学方法整合是可行的。
    An overview of the role of glycosylation in prostate cancer (PCa) development and progression is presented, focusing on recent advancements in defining the N-glycome through glycomic profiling and glycoproteomic methodologies. Glycosylation is a common post-translational modification typified by oligosaccharides attached N-linked to asparagine or O-linked to serine or threonine on carrier proteins. These attached sugars have crucial roles in protein folding and cellular recognition processes, such that altered glycosylation is a hallmark of cancer pathogenesis and progression. In the past decade, advancements in N-glycan profiling workflows using Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) technology have been applied to define the spatial distribution of glycans in PCa tissues. Multiple studies applying N-glycan MALDI-MSI to pathology-defined PCa tissues have identified significant alterations in N-glycan profiles associated with PCa progression. N-glycan compositions progressively increase in number, and structural complexity due to increased fucosylation and sialylation. Additionally, significant progress has been made in defining the glycan and glycopeptide compositions of prostatic-derived glycoproteins like prostate-specific antigen in tissues and biofluids. The glycosyltransferases involved in these changes are potential drug targets for PCa, and new approaches in this area are summarized. These advancements will be discussed in the context of the further development of clinical diagnostics and therapeutics targeting glycans and glycoproteins associated with PCa progression. Integration of large scale spatial glycomic data for PCa with other spatial-omic methodologies is now feasible at the tissue and single-cell levels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质糖基化是复杂的翻译后修饰,通常分类为N-或O-连接。糖肽的位点特异性分析是通过多种片段化方法完成的,取决于正在研究的糖基化类型和可用的仪器。例如,碰撞解离方法经常用于N-糖蛋白质组学分析,假设每个胰蛋白酶肽存在一个N-测序子。或者,基于电子的方法对于O-糖蛋白定位是必不可少的。然而,同时存在的N-和O-糖基化肽可以表明基于电子的片段方法的N-糖蛋白质组学的必要性,这是不常见的。因此,我们量化了粘蛋白和其他糖蛋白中N-和O-糖肽的患病率。在粘蛋白内检测到高得多的共占据频率,而在非粘蛋白糖蛋白内仅发生可忽略的发生。这从重组和/或纯化蛋白质的分析中得到了证明,以及更复杂的样本。如果发生共同入住,O-糖位点经常定位于N-序列子内的Ser/Thr。此外,我们发现,靠近被占据的Asn的O-聚糖主要是未阐述的核心1结构,而更远的则更远。总的来说,我们证明了基于电子的方法是对粘蛋白进行可靠的位点特异性分析所必需的,其中共同占用更为普遍。相反,碰撞方法通常足以分析其他类型的糖蛋白。
    Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide. Alternatively, electron-based methods are indispensable for O-glycosite localization. However, the presence of simultaneously N- and O-glycosylated peptides could suggest the necessity of electron-based fragmentation methods for N-glycoproteomics, which is not commonly performed. Thus, we quantified the prevalence of N- and O-glycopeptides in mucins and other glycoproteins. A much higher frequency of co-occupancy within mucins was detected whereas only a negligible occurrence occurred within non-mucin glycoproteins. This was demonstrated from analyses of recombinant and/or purified proteins, as well as more complex samples. Where co-occupancy occurred, O-glycosites were frequently localized to the Ser/Thr within the N-sequon. Additionally, we found that O-glycans in close proximity to the occupied Asn were predominantly unelaborated core 1 structures, while those further away were more extended. Overall, we demonstrate electron-based methods are required for robust site-specific analysis of mucins, wherein co-occupancy is more prevalent. Conversely, collisional methods are generally sufficient for analyses of other types of glycoproteins.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质半胱氨酸S-糖基化是一种相对罕见且特征较差的翻译后修饰(PTM)。创建携带这种修饰的可靠模型蛋白质具有挑战性。缺乏可用的模型或天然S-糖基化蛋白显著阻碍了在现实世界蛋白质组学研究中检测蛋白质半胱氨酸S-糖基化的基于质谱(基于MS)的方法的发展。也有有限的MS测序数据描述更容易产生合成的S-糖肽。这里,我们提供了对S-葡萄糖肽模型的自动注释CID/HCD光谱进行深入手动分析的结果。TheCID光谱显示了一系列的y/b碎片离子,保留了S-糖基化,无论主要的m/z信号对应于1,2-脱水葡萄糖从前体离子的中性损失。此外,光谱显示了表明葡萄糖基从半胱氨酸位置转移到赖氨酸上的信号,精氨酸(Lys,Arg)侧链,和肽N-末端。其他光谱证据表明,转移的N-糖基化初始产物被转化为N-果糖糖基化(即,由于Amadori重排而导致的糖化)结构。我们讨论了葡萄糖氧碳正离子(Glc)向带正电的胍残基(ArgH)的特殊转移,并提出了涉及1,2-氢化物离子移位的气相Amadori重排机制。
    Protein cysteine S-glycosylation is a relatively rare and less well characterized post-translational modification (PTM). Creating reliable model proteins that carry this modification is challenging. The lack of available models or natural S-glycosylated proteins significantly hampers the development of mass-spectrometry-based (MS-based) methodologies for detecting protein cysteine S-glycosylation in real-world proteomic studies. There is also limited MS-sequencing data describing it as easier to create synthetic S-glycopeptides. Here, we present the results of an in-depth manual analysis of automatically annotated CID/HCD spectra for model S-glucopeptides. The CID spectra show a long series of y/b-fragment ions with retained S-glucosylation, regardless of the dominant m/z signals corresponding to neutral loss of 1,2-anhydroglucose from the precursor ions. In addition, the spectra show signals manifesting glucosyl transfer from the cysteine position onto lysine, arginine (Lys, Arg) side chains, and a peptide N-terminus. Other spectral evidence indicates that the N-glucosylated initial products of transfer are converted into N-fructosylated (i.e., glycated) structures due to Amadori rearrangement. We discuss the peculiar transfer of the glucose oxocarbenium ion (Glc+) to positively charged guanidinium residue (ArgH+) and propose a mechanism for the gas-phase Amadori rearrangement involving a 1,2-hydride ion shift.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    最近,HexNAcQuest被开发用于帮助区分由HexNAc异构体修饰的肽,更具体地说,O-连接的β-N-乙酰葡糖胺(O-GlcNAc)和O-连接的α-N-乙酰半乳糖胺(O-GalNAc,Tn抗原)。为了促进其使用(特别是对于来自糖蛋白质组学研究的数据集),在这里,我们提出了一个详细的协议。它描述了用户可能需要使用HexNAcQuest来区分这两个修改的示例案例和过程。
    Recently, HexNAcQuest was developed to help distinguish peptides modified by HexNAc isomers, more specifically O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc, Tn antigen). To facilitate its usage (particularly for datasets from glycoproteomics studies), herein we present a detailed protocol. It describes example cases and procedures for which users might need to use HexNAcQuest to distinguish these two modifications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号