genome stability

基因组稳定性
  • 文章类型: Journal Article
    非蛋白质泛素化底物的最新发现使我们对这种修饰的理解超出了常规蛋白质靶标。然而,其他类型的底物的存在仍然难以捉摸。这里,我们提供的证据表明,核酸也可以通过酯键形成直接泛素化。DTX3L,DELTEX家族E3泛素连接酶的成员,在体外泛素化DNA和RNA,该活性与DTX3共享,但与其他DELTEX家族成员DTX1,DTX2和DTX4不共享。DTX3L显示3'末端腺苷优于其他核苷酸。此外,我们证明,核酸的泛素化是可逆的DUB,如USP2,JOSD1和SARS-CoV-2PLpro。总的来说,我们的研究提出了体外核酸的可逆泛素化,并讨论了其潜在的功能意义。
    The recent discovery of non-proteinaceous ubiquitylation substrates broadened our understanding of this modification beyond conventional protein targets. However, the existence of additional types of substrates remains elusive. Here, we present evidence that nucleic acids can also be directly ubiquitylated via ester bond formation. DTX3L, a member of the DELTEX family E3 ubiquitin ligases, ubiquitylates DNA and RNA in vitro and that this activity is shared with DTX3, but not with the other DELTEX family members DTX1, DTX2 and DTX4. DTX3L shows preference for the 3\'-terminal adenosine over other nucleotides. In addition, we demonstrate that ubiquitylation of nucleic acids is reversible by DUBs such as USP2, JOSD1 and SARS-CoV-2 PLpro. Overall, our study proposes reversible ubiquitylation of nucleic acids in vitro and discusses its potential functional implications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单链DNA结合蛋白SSB/RPA是细菌/真核生物中与ssDNA结合并协调DNA代谢过程如复制的普遍存在和必需的蛋白质。修复,和重组。SSB保护ssDNA免受核酸酶降解,同时还促进/调节参与DNA过程的多种伴侣蛋白的活性。使用Spi-分析,它检测从大肠杆菌染色体中异常切除的λ原蛋白,作为非法重组(IR)发生的量度,我们已经证明SSB在几个DSB切除途径中抑制IR。条件ssb-1突变在非允许温度下产生比recQ失活更高的IR增加。双ssb-1recQ突变体具有更高的IR水平,同时显示减少的同源重组(HR)。值得注意的是,ssb基因过表达补充recQ缺陷抑制IR,表明SSB函数对RecQ是上位性的。过度产生的截短的SSBΔC8蛋白,与ssDNA结合,但不与伴侣蛋白相互作用,只有部分互补的recQ和ssb-1突变,同时导致野生型细菌的IR增加,表明SSB的ssDNA结合是必需的,但不足以有效抑制IR,这需要与RecQ和可能的其他蛋白质相互作用。我们的结果描述了SSB作为大肠杆菌的主要基因组管理员,在抑制IR的同时促进HR。在生理条件下实现高保真DSB修复时,RecQ解旋酶辅助SSB,它控制谁的活动。相反,过量的SSB使得RecQ对于IR抑制是冗余的。
    Single-strand DNA-binding proteins SSB/RPA are ubiquitous and essential proteins that bind ssDNA in bacteria/eukaryotes and coordinate DNA metabolic processes such as replication, repair, and recombination. SSB protects ssDNA from degradation by nucleases, while also facilitating/regulating the activity of multiple partner proteins involved in DNA processes. Using Spi- assay, which detects aberrantly excised λ prophage from the E. coli chromosome as a measure of illegitimate recombination (IR) occurrence, we have shown that SSB inhibits IR in several DSB resection pathways. The conditional ssb-1 mutation produced a higher IR increase at the nonpermissive temperature than the recQ inactivation. A double ssb-1 recQ mutant had an even higher level of IR, while showing reduced homologous recombination (HR). Remarkably, the ssb gene overexpression complemented recQ deficiency in suppressing IR, indicating that the SSB function is epistatic to RecQ. Overproduced truncated SSBΔC8 protein, which binds to ssDNA, but does not interact with partner proteins, only partially complemented recQ and ssb-1 mutations, while causing an IR increase in otherwise wild-type bacteria, suggesting that ssDNA binding of SSB is required but not sufficient for effective IR inhibition, which rather entails interaction with RecQ and likely some other protein(s). Our results depict SSB as the main genome caretaker in E. coli, which facilitates HR while inhibiting IR. In enabling high-fidelity DSB repair under physiological conditions SSB is assisted by RecQ helicase, whose activity it controls. Conversely, an excess of SSB renders RecQ redundant for IR suppression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞内DNA前体池的大小和组成是维持基因组稳定性不可或缺的,这种关系是我们对癌症的理解的基础。致癌的关键方面,包括突变率升高和诱导癌细胞中某些类型的DNA损伤,可能与脱氧核苷三磷酸(dNTP)池中的干扰有关。此外,我们治疗癌症的方法充分利用了DNA和dNTP池之间的代谢相互作用,一个长期存在的例子是使用基于抗代谢物的癌症疗法,随着新的靶向疗法的发展,这种策略继续显示出希望。在这篇评论中,我们汇编了当前关于癌细胞中dNTP池扰动的原因和后果的知识,以及它们对基因组稳定性的影响。我们概述了该领域剩余的几个悬而未决的问题,例如dNTP分解代谢在基因组稳定性中的作用和dNTP池扩增的后果。重要的是,我们详细介绍了如何利用我们对这些过程的机械理解,以便为癌症患者提供更明智的治疗选择。
    The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用非病毒方法生产转基因动物引起了关于其长期健康和基因组稳定性的问题。在这项研究中,我们在转基因牛的这些方面进行了十年的评估,使用转座子介导的基因转移。我们的纵向分析包括全面的健康评估和全基因组DNA重新测序。我们发现转座子介导的超过10岁的转基因牛的生理参数或健康并发症没有显着变化。基因组分析显示,转基因牛的体细胞突变和拷贝数变异率与非转基因牛相当。此外,结构变异很少见,提示转座子介导的基因插入并没有损害基因组的完整性.这些发现突出了转座子系统产生转基因家畜的可行性,有可能扩大其在农业和生物技术中的应用。这项研究大大有助于我们理解大型动物转基因的长期影响,并支持这种方法的安全性和稳定性。
    The production of transgenic animals using non-viral methods has raised questions regarding their long-term health and genomic stability. In this study, we evaluated these aspects in transgenic cattle over ten years, using transposon-mediated gene transfer. Our longitudinal analysis included a comprehensive health assessment and whole-genome DNA resequencing. We found no significant alterations in physiological parameters or health complications in transposon-mediated transgenic cattle that exceeded 10 years of age. Genomic analysis revealed that the rates of somatic mutations and copy number variations in transgenic cattle were comparable to those in non-transgenic cattle. Furthermore, structural variants were infrequent, suggesting that transposon-mediated gene insertion did not compromise genomic integrity. These findings highlight the viability of transposon systems for generating transgenic livestock, potentially expanding their applications in agriculture and biotechnology. This study contributes significantly to our understanding of the long-term implications of transgenesis in large animals and supports the safety and stability of this method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    静止是一种重要的非病理状态,细胞暂时暂停细胞周期进程,有时几十年来,直到他们接受适当的增殖刺激。静止细胞占身体的很大比例,在静止期保持基因组完整性对组织结构和功能至关重要。虽然处于静止状态的细胞免于与DNA复制或有丝分裂相关的DNA损伤,它们仍然暴露于内源性DNA损伤的各种来源,包括正常转录和代谢诱导的那些。因此,细胞保持其有效修复可能发生的损伤并返回细胞周期而不丧失其细胞特性的能力是至关重要的。值得注意的是,虽然DNA修复途径在静止细胞中经常被下调,新出现的证据表明存在活性或差异调节的修复机制。这篇综述旨在提供对哺乳动物系统静止期间DNA修复过程的最新了解,并阐明静止细胞中无效或不准确修复的潜在病理后果。
    Quiescence is an important non-pathological state in which cells pause cell cycle progression temporarily, sometimes for decades, until they receive appropriate proliferative stimuli. Quiescent cells make up a significant proportion of the body, and maintaining genomic integrity during quiescence is crucial for tissue structure and function. While cells in quiescence are spared from DNA damage associated with DNA replication or mitosis, they are still exposed to various sources of endogenous DNA damage, including those induced by normal transcription and metabolism. As such, it is vital that cells retain their capacity to effectively repair lesions that may occur and return to the cell cycle without losing their cellular properties. Notably, while DNA repair pathways are often found to be downregulated in quiescent cells, emerging evidence suggests the presence of active or differentially regulated repair mechanisms. This review aims to provide a current understanding of DNA repair processes during quiescence in mammalian systems and sheds light on the potential pathological consequences of inefficient or inaccurate repair in quiescent cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    G-四链体(G4s)在整个基因组中形成并影响重要的细胞过程。它们的失调可以挑战DNA复制叉进展并威胁基因组稳定性。这里,我们证明了双链DNA(dsDNA)转位酶解旋酶样转录因子(HLTF)在响应G4s中的意想不到的作用。我们证明了HLTF,在人类基因组中富含G4s,可以在体外直接展开G4s,并使用这种ATP依赖性转位酶功能来抑制G4在整个细胞周期中的积累。此外,MSH2(结合G4s的MutS异源二聚体的组成部分)和HLTF协同作用以抑制G4积累,限制端粒的替代延长,并促进对G4稳定药物的耐药性。在离散但互补的角色中,当G4s通过抑制引发酶-聚合酶(PrimPol)依赖性的重新引发而稳定时,HLTF会抑制DNA合成。一起,HLTF在G4反应中的独特作用可防止DNA损伤和潜在的诱变复制,从而保护基因组稳定性.
    G-quadruplexes (G4s) form throughout the genome and influence important cellular processes. Their deregulation can challenge DNA replication fork progression and threaten genome stability. Here, we demonstrate an unexpected role for the double-stranded DNA (dsDNA) translocase helicase-like transcription factor (HLTF) in responding to G4s. We show that HLTF, which is enriched at G4s in the human genome, can directly unfold G4s in vitro and uses this ATP-dependent translocase function to suppress G4 accumulation throughout the cell cycle. Additionally, MSH2 (a component of MutS heterodimers that bind G4s) and HLTF act synergistically to suppress G4 accumulation, restrict alternative lengthening of telomeres, and promote resistance to G4-stabilizing drugs. In a discrete but complementary role, HLTF restrains DNA synthesis when G4s are stabilized by suppressing primase-polymerase (PrimPol)-dependent repriming. Together, the distinct roles of HLTF in the G4 response prevent DNA damage and potentially mutagenic replication to safeguard genome stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Hi-C,全基因组染色体构象捕获试验,是一种强大的工具,用于通过将物理成对相互作用转换为成对相互作用计数来研究三维基因组组织。为了研究酿酒酵母减数分裂重组的许多时间调控方面,Hi-C测定必须是稳健的,以便可以在遗传数据集之间进行精细和大规模的比较。在这里,我们描述了Hi-C(Hi-C2B)的更新协议,该协议以低噪声和相对较低的成本生成可再现的交互数据库。
    Hi-C, a genome-wide chromosome conformation capture assay, is a powerful tool used to study three-dimensional genome organization by converting physical pairwise interactions into counts of pairwise interactions. To study the many temporally regulated facets of meiotic recombination in S. cerevisiae, the Hi-C assay must be robust such that fine- and wide-scale comparisons between genetic datasets can be made. Here we describe an updated protocol for Hi-C (Hi-C2B) that generates reproducible libraries of interaction data with low noise and for a relatively low cost.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    同源重组(HR)在DNA双链断裂(DSB)的修复中起着至关重要的作用,复制应激反应,和基因组维护。然而,复制过程中不受调节的HR会损害基因组复制并损害基因组稳定性。在DNA复制过程中HR调节的潜在机制是模糊的。这里,我们发现RTEL1解旋酶,RAD51和RAD51旁系同源物在停滞的复制站点上丰富。RTEL1的缺失导致复制过程中RAD51介导的HR和fork逆转增加,并影响全基因组复制,可以通过共同消耗RAD51和RAD51旁系同源物来拯救。有趣的是,如SMARCAL1/ZRANB3/HLTF/FBH1和HR缺陷型RAD51突变体的表达的叉子重塑体的共同消耗也拯救了RTEL1缺陷型细胞中的复制缺陷。RTEL1在复制过程中的抗重组酶功能取决于其与PCNA的相互作用和解旋酶活性。一起,我们的数据确定了RTEL1解旋酶在限制RAD51介导的叉逆转和HR活性以促进无错误基因组复制中的作用.
    Homologous recombination (HR) plays an essential role in the repair of DNA double-strand breaks (DSBs), replication stress responses, and genome maintenance. However, unregulated HR during replication can impair genome duplication and compromise genome stability. The mechanisms underlying HR regulation during DNA replication are obscure. Here, we find that RTEL1 helicase, RAD51, and RAD51 paralogs are enriched at stalled replication sites. The absence of RTEL1 leads to an increase in the RAD51-mediated HR and fork reversal during replication and affects genome-wide replication, which can be rescued by co-depleting RAD51 and RAD51 paralogs. Interestingly, co-depletion of fork remodelers such as SMARCAL1/ZRANB3/HLTF/FBH1 and expression of HR-defective RAD51 mutants also rescues replication defects in RTEL1-deficient cells. The anti-recombinase function of RTEL1 during replication depends on its interaction with PCNA and helicase activity. Together, our data identify the role of RTEL1 helicase in restricting RAD51-mediated fork reversal and HR activity to facilitate error-free genome duplication.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    DNA复制非常准确,每个细胞分裂周期每个人类基因组只有少数突变。DNA损伤引起的复制应激,转录-复制冲突,必须以最大程度地减少错误并最大程度地完成DNA合成的方式有效地克服复制机制的其他障碍。复制叉逆转是一种帮助细胞耐受复制应激的机制。该过程涉及亲本模板DNA链的重新退火和新生DNA双链体的生成。虽然叉逆转可能通过促进DNA修复或模板转换而有益,它必须局限于适当的环境,以保持基因组的稳定性。许多酶都参与了这个过程,包括ATP依赖性DNA转位酶,如SMARCAL1,ZRANB3,HLTF,和解旋酶FBH1.此外,需要RAD51重组酶。许多其他因素和监管活动也可以确保逆转是有益的,而不是产生不良结果。最后,反向叉也必须稳定,通常需要重新启动以完成DNA合成。叉子逆转的破坏或放松管制会导致多种人类疾病。在这篇综述中,我们将描述最新的逆转模型和关键的监管机制。
    DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转录是基因组不稳定性的主要原因。核糖体RNA(rDNA)基因座由基因组中最活跃转录基因的头对尾重复组成。RNA聚合酶I(RNAPI)负责大量的rRNA生产,新生rRNA与酵母核仁中的早期组装因子共同转录组装。在酿酒酵母中,先前已经描述了带有转录因子Rrn3与RNAPI亚基Rpa43(CARA-RNAPI)融合的RNAPI的突变形式。这里,我们表明CARA-RNAPI等位基因导致一种新型的rRNA加工缺陷,与rDNA基因组不稳定性有关。CARA-RNAPI突变体中产生的35SrRNA的一部分逃避加工步骤并积累。这种积累在影响外泌体复合物的核酸外切活性的突变体中增加。CARA-RNAPI是已知影响rDNA缩合的单聚蛋白突变体的合成致死性。CARA-RNAPI强烈影响rDNA组织并增加rDNA拷贝数变异。rDNA拷贝数减少抑制了致死性,表明染色体分离缺陷是由基因组rDNA不稳定性引起的。我们得出的结论是,Rrn3与转录RNAPI的组成性关联导致rRNA的积累,这些rRNA逃避了正常加工,影响rDNA组织并影响rDNA稳定性。
    Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号