effector-triggered immunity

  • 文章类型: Journal Article
    挥发性有机化合物(VOC)是低分子量分子,由于其低沸点,在室温下易于蒸发。挥发性有机化合物是由所有生物排放的;因此,王国之间和王国内部的互动已经建立,这是我们星球上生命结构的基础。通过VOCs研究最多的相互作用之一是微生物VOCs(mVOCs)与植物之间的相互作用,包括农业利益。mVOC相互作用为植物产生各种优势,从促进生长到激活由水杨酸(系统获得性抗性)和茉莉酸(诱导的系统抗性)触发的防御途径,以保护它们免受植物病原体的侵害。此外,mVOCs直接抑制植物病原体的生长,从而为植物提供间接保护。当前的农业问题之一是化学品的广泛使用,比如肥料,旨在打击生产损失,和杀虫剂来对抗植物病原体感染。这导致了食品安全和环境污染的问题。因此,为了克服这个问题,重要的是要确定不产生环境影响的替代品,例如mVOCs的应用。这篇综述讨论了来自不同王国的微生物排放的mVOCs的保护作用及其在植物防御途径中的意义。
    Volatile organic compounds (VOCs) are low molecular weight molecules that tend to evaporate easily at room temperature because of their low boiling points. VOCs are emitted by all organisms; therefore, inter- and intra-kingdom interactions have been established, which are fundamental to the structuring of life on our planet. One of the most studied interactions through VOCs is between microorganism VOCs (mVOCs) and plants, including those of agricultural interest. The mVOC interactions generate various advantages for plants, ranging from promoting growth to the activation of defense pathways triggered by salicylic acid (systemic acquired resistance) and jasmonic acid (induced systemic resistance) to protect them against phytopathogens. Additionally, mVOCs directly inhibit the growth of phytopathogens, thereby providing indirect protection to plants. Among the current agricultural problems is the extensive use of chemicals, such as fertilizers, intended to combat production loss, and pesticides to combat phytopathogen infection. This causes problems in food safety and environmental pollution. Therefore, to overcome this problem, it is important to identify alternatives that do not generate environmental impacts, such as the application of mVOCs. This review addresses the protective effects of mVOCs emitted by microorganisms from different kingdoms and their implications in plant defense pathways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    青枯雷尔氏菌物种复合物会导致各种作物的青枯病。番茄品种夏威夷7996是一种广泛使用的抗性资源;然而,抗性被毒株逃避,潜在的机制仍然未知。这里,我们报道了Ⅱ型菌株ES5-1可以克服夏威夷7996抗性。RipV2,一种特异于Ⅱ型菌株的Ⅲ型效应子,对克服番茄抗性至关重要。RipV2编码E3泛素连接酶,抑制免疫应答和Toll/白介素-1受体/抗性核苷酸结合/富含亮氨酸重复序列(NLR)(TNL)介导的细胞死亡。番茄辅助NLRN需求基因1(NRG1),增强疾病易感性1(EDS1),和衰老相关基因101b(SAG101b)被鉴定为RipV2靶蛋白。RipV2对夏威夷7996的ES5-1毒力至关重要,但在SlNRG1沉默的番茄中却没有,证明SlNRG1是RipV2毒力靶标。我们的结果剖析了RipV2破坏免疫力的机制,并强调了融合的免疫成分在赋予细菌枯萎病抗性中的重要性。
    The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    气孔是植物和植物病原体之间的战场。植物可以感知病原体,诱导气孔孔闭合,而病原体可以用它们的植物毒素和激发剂克服这种免疫反应。在这次审查中,我们总结了气孔-病原体相互作用的新发现。最近的研究表明,在细菌感染过程中,气孔运动持续以闭-开-闭-开模式发生,带来了对气孔免疫的新认识。此外,典型模式触发的免疫途径和离子通道活性似乎在经过充分研究的拟南芥-假单胞菌致病系统之外的植物-病原体相互作用中很常见。这些发展可以有助于作物改良的目标。研究完整叶片的新技术和可用组学数据集的进步为理解气孔门的斗争提供了新方法。未来的研究应旨在进一步研究与气孔免疫有关的防御-增长权衡,在这个时候鲜为人知。
    Stomata serve as the battleground between plants and plant pathogens. Plants can perceive pathogens, inducing closure of the stomatal pore, while pathogens can overcome this immune response with their phytotoxins and elicitors. In this review, we summarize new discoveries in stomata-pathogen interactions. Recent studies have shown that stomatal movement continues to occur in a close-open-close-open pattern during bacterium infection, bringing a new understanding of stomatal immunity. Furthermore, the canonical pattern-triggered immunity pathway and ion channel activities seem to be common to plant-pathogen interactions outside of the well-studied Arabidopsis-Pseudomonas pathosystem. These developments can be useful to aid in the goal of crop improvement. New technologies to study intact leaves and advances in available omics data sets provide new methods for understanding the fight at the stomatal gate. Future studies should aim to further investigate the defense-growth trade-off in relation to stomatal immunity, as little is known at this time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物细胞内核苷酸结合和富含亮氨酸的重复免疫受体(NLR)在激活强病原体防御反应中起关键作用。植物NLR蛋白受到严格调节,并且在不存在病原体效应物的情况下以非常低的水平积累。然而,关于这种低水平的NLR蛋白如何能够在识别病原体效应子时诱导强烈的免疫应答知之甚少。这里,我们报告说,在没有效应器的情况下,番茄NLRSw-5b的非活性形式被E3连接酶SBP1靶向泛素化。SBP1与Sw-5b仅通过其N-末端结构域的相互作用导致缓慢的周转。相比之下,在其自动活动状态下,随着SBP1上调并与其N末端和NB-LRR结构域相互作用,Sw-5b迅速翻转。在感染番茄斑萎病毒期间,病毒效应物NSm与Sw-5b相互作用并破坏Sw-5b与SBP1的相互作用,从而稳定活性Sw-5b并使其诱导强烈的免疫应答。
    Plant intracellular nucleotide-binding and leucine-rich repeat immune receptors (NLRs) play a key role in activating a strong pathogen defense response. Plant NLR proteins are tightly regulated and accumulate at very low levels in the absence of pathogen effectors. However, little is known about how this low level of NLR proteins is able to induce robust immune responses upon recognition of pathogen effectors. Here, we report that, in the absence of effector, the inactive form of the tomato NLR Sw-5b is targeted for ubiquitination by the E3 ligase SBP1. Interaction of SBP1 with Sw-5b via only its N-terminal domain leads to slow turnover. In contrast, in its auto-active state, Sw-5b is rapidly turned over as SBP1 is upregulated and interacts with both its N-terminal and NB-LRR domains. During infection with the tomato spotted wilt virus, the viral effector NSm interacts with Sw-5b and disrupts the interaction of Sw-5b with SBP1, thereby stabilizing the active Sw-5b and allowing it to induce a robust immune response.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    前mRNA剪接是转录后修饰的重要步骤,并在植物的各种生理过程中发挥作用。人NHP2L在剪接体组装过程中与U4snRNA结合;它参与RNA剪接并介导人类肿瘤的发展。然而,在植物中还没有发现直系同源物。因此,我们报道了At4g12600编码直系同源NHP2L蛋白,和AtSNU13与剪接体复合物的成分相关;atsnu13突变体在抗病性方面表现出受损的抗性,表明AtSNU13是植物免疫的正调节因子。与野生型植物相比,atsnu13突变导致防御相关基因的剪接模式改变和防御相关基因的表达减少,例如RBOHD和ALD1。进一步研究表明,AtSNU13促进U4/U6之间的相互作用。U5三-snRNP特异性27K和目标mRNA中的基序调节RNA剪接。我们的研究强调了AtSNU13通过影响防御相关基因的前mRNA剪接在调节植物免疫中的作用。
    Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    弓形虫是一种细胞内寄生虫,可以激活NLRP1炎性体,导致Lewis大鼠巨噬细胞焦亡,但是潜在的机制还没有很好的理解。在这项研究中,我们进行了全基因组CRISPR筛选,并鉴定了致密颗粒蛋白GRA35,GRA42和GRA43作为介导Lewis大鼠巨噬细胞死亡的弓形虫效应子.GRA35位于寄生虫液泡膜上,它与宿主E3泛素连接酶ITCH相互作用。抑制蛋白酶体活性或ITCH敲除可防止弓形虫感染的Lewis大鼠巨噬细胞的焦亡,与“NLRP1功能退化模型”一致。\"然而,没有证据表明ITCH直接泛素化或与大鼠NLRP1相互作用。我们还发现GRA35-ITCH相互作用影响IFNγ激活的人成纤维细胞中的弓形虫适应性,可能是由于ITCH在招募泛素和寄生虫限制因子RNF213到寄生虫液泡膜中的作用。这些发现确定了宿主E3泛素连接酶ITCH在介导效应子触发免疫中的新作用,一个关键概念,涉及识别细胞内病原体和启动宿主先天免疫反应。IMPORTANCEEffector触发的免疫代表了一种先天免疫防御机制,在感知和控制细胞内病原体感染中起着至关重要的作用。Lewis大鼠的NLRP1炎性体可以检测弓形虫感染,这引发了感染的巨噬细胞的突增,并消除了寄生虫的复制生态位。本文报道的工作表明,宿主E3泛素连接酶ITCH能够识别并与位于寄生虫-宿主界面上的弓形虫效应蛋白GRA35相互作用,导致Lewis大鼠巨噬细胞NLRP1炎性体活化。此外,ITCH-GRA35相互作用有助于在IFNγ刺激的人成纤维细胞中限制弓形虫。因此,这项研究为理解宿主E3泛素连接酶介导的病原体识别和限制提供了有价值的见解。
    Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the \"NLRP1 functional degradation model.\" However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH\'s role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.IMPORTANCEEffector-triggered immunity represents an innate immune defense mechanism that plays a crucial role in sensing and controlling intracellular pathogen infection. The NLRP1 inflammasome in the Lewis rats can detect Toxoplasma infection, which triggers proptosis in infected macrophages and eliminates the parasite\'s replication niche. The work reported here revealed that host E3 ubiquitin ligase ITCH is able to recognize and interact with Toxoplasma effector protein GRA35 localized on the parasite-host interface, leading to NLRP1 inflammasome activation in Lewis rat macrophages. Furthermore, ITCH-GRA35 interaction contributes to the restriction of Toxoplasma in human fibroblasts stimulated by IFNγ. Thus, this research provides valuable insights into understanding pathogen recognition and restriction mediated by host E3 ubiquitin ligase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    磷脂酸(PA)和活性氧(ROS)是介导后生动物和植物中多种信号过程的关键细胞信使。PA稳态如何在免疫激发后被紧密调节并与ROS信号交织在一起仍然难以捉摸。我们在这里报道拟南芥二酰甘油激酶5(DGK5)调节植物模式触发免疫(PTI)和效应子触发免疫(ETI)。模式识别受体(PRR)相关激酶BIK1在Ser-506处磷酸化DGK5,导致PA快速爆发并激活植物免疫,而PRR激活的细胞内MPK4在Thr-446处磷酸化DGK5,随后抑制DGK5活性和PA产生,导致植物免疫力减弱。PA结合并稳定NADPH氧化酶呼吸道爆炸氧化酶同型D(RBOHD),调节植物PTI和ETI中ROS的产生,和他们的潜力。我们的数据表明,PRR激活的BIK1和MPK4对DGK5的不同磷酸化可以平衡细胞PA爆发的稳态,从而调节ROS的产生,从而协调植物免疫的两个分支。
    Phosphatidic acid (PA) and reactive oxygen species (ROS) are crucial cellular messengers mediating diverse signaling processes in metazoans and plants. How PA homeostasis is tightly regulated and intertwined with ROS signaling upon immune elicitation remains elusive. We report here that Arabidopsis diacylglycerol kinase 5 (DGK5) regulates plant pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). The pattern recognition receptor (PRR)-associated kinase BIK1 phosphorylates DGK5 at Ser-506, leading to a rapid PA burst and activation of plant immunity, whereas PRR-activated intracellular MPK4 phosphorylates DGK5 at Thr-446, which subsequently suppresses DGK5 activity and PA production, resulting in attenuated plant immunity. PA binds and stabilizes the NADPH oxidase RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD), regulating ROS production in plant PTI and ETI, and their potentiation. Our data indicate that distinct phosphorylation of DGK5 by PRR-activated BIK1 and MPK4 balances the homeostasis of cellular PA burst that regulates ROS generation in coordinating two branches of plant immunity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    弓形虫是一种细胞内寄生虫,可以激活NLRP1炎性体,导致Lewis大鼠巨噬细胞焦亡,但是潜在的机制还没有很好的理解。在这项研究中,我们进行了全基因组CRISPR筛选,并鉴定了致密颗粒蛋白GRA35,GRA42和GRA43作为介导Lewis大鼠巨噬细胞死亡的弓形虫效应子.GRA35位于寄生虫液泡膜上,它与宿主E3泛素连接酶ITCH相互作用。抑制蛋白酶体活性或ITCH敲除可防止弓形虫感染的Lewis大鼠巨噬细胞的焦亡,与“NLRP1功能退化模型”一致。然而,没有证据表明ITCH直接泛素化或与大鼠NLRP1相互作用。我们还发现GRA35-ITCH相互作用影响IFNγ激活的人成纤维细胞中的弓形虫适应性,可能是由于ITCH在招募泛素和寄生虫限制因子RNF213到寄生虫液泡膜中的作用。这些发现确定了宿主E3泛素连接酶ITCH在介导效应子触发免疫中的新作用,一个关键概念,涉及识别细胞内病原体和启动宿主先天免疫反应。
    目的:效应子触发的免疫代表了一种先天免疫防御机制,在感知和控制细胞内病原体感染中起着至关重要的作用。Lewis大鼠的NLRP1炎性体可以检测弓形虫感染,这引发了感染的巨噬细胞的突增,并消除了寄生虫的复制生态位。本文报道的工作表明,宿主E3泛素连接酶ITCH能够识别并与位于寄生虫-宿主界面上的弓形虫效应蛋白GRA35相互作用,导致Lewis大鼠巨噬细胞NLRP1炎性体活化。此外,ITCH-GRA35相互作用有助于在IFNγ刺激的人成纤维细胞中限制弓形虫。因此,这项研究为理解宿主E3泛素连接酶介导的病原体识别和限制提供了有价值的见解。
    Toxoplasma gondii is an intracellular parasite that can activate the NLRP1 inflammasome leading to macrophage pyroptosis in Lewis rats, but the underlying mechanism is not well understood. In this study, we performed a genome-wide CRISPR screen and identified the dense granule proteins GRA35, GRA42, and GRA43 as the Toxoplasma effectors mediating cell death in Lewis rat macrophages. GRA35 localizes on the parasitophorous vacuole membrane, where it interacts with the host E3 ubiquitin ligase ITCH. Inhibition of proteasome activity or ITCH knockout prevented pyroptosis in Toxoplasma-infected Lewis rat macrophages, consistent with the \"NLRP1 functional degradation model\". However, there was no evidence that ITCH directly ubiquitinates or interacts with rat NLRP1. We also found that GRA35-ITCH interaction affected Toxoplasma fitness in IFNγ-activated human fibroblasts, likely due to ITCH\'s role in recruiting ubiquitin and the parasite-restriction factor RNF213 to the parasitophorous vacuole membrane. These findings identify a new role of host E3 ubiquitin ligase ITCH in mediating effector-triggered immunity, a critical concept that involves recognizing intracellular pathogens and initiating host innate immune responses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    钙(Ca2+)信号包括三个步骤:(1)启动细胞Ca2+浓度的变化,以响应刺激,(2)通过其传感器直接结合Ca2+来识别变化,(3)信号转导引发下游反应。最近的研究已经揭示了Ca2+信号在由质膜(PM)和细胞内受体引发的两层免疫应答中的核心作用。分别。我们理解的这些进步归因于几个方面的研究,包括基因编码的Ca2+报告基因的发明,用于记录细胞内Ca2+信号,Ca2+通道及其门控机制的识别,和Ca2+结合蛋白(Ca2+传感器)的功能分析。这篇综述分析了最近的文献,这些文献说明了Ca2稳态和信号传导在植物先天免疫中的重要性,具有复杂的Ca2+依赖性正负调节。
    Calcium (Ca2+) signaling consists of three steps: (1) initiation of a change in cellular Ca2+ concentration in response to a stimulus, (2) recognition of the change through direct binding of Ca2+ by its sensors, (3) transduction of the signal to elicit downstream responses. Recent studies have uncovered a central role for Ca2+ signaling in both layers of immune responses initiated by plasma membrane (PM) and intracellular receptors, respectively. These advances in our understanding are attributed to several lines of research, including invention of genetically-encoded Ca2+ reporters for the recording of intracellular Ca2+ signals, identification of Ca2+ channels and their gating mechanisms, and functional analysis of Ca2+ binding proteins (Ca2+ sensors). This review analyzes the recent literature that illustrates the importance of Ca2+ homeostasis and signaling in plant innate immunity, featuring intricate Ca2+dependent positive and negative regulations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小麦部落中的抗性(R)基因不仅包括编码典型的细胞内核苷酸结合型富含亮氨酸重复蛋白(NLR)的基因,还包括编码激酶融合蛋白(KFPs)的基因。探索这些非常规KFP可能会扩大效应子触发免疫(ETI)的范围,并对作物改良具有重要意义。
    Resistance (R) genes in the Triticeae tribe include not only genes encoding the canonical intracellular nucleotide-binding leucine-rich-repeat proteins (NLRs) but also genes encoding kinase fusion proteins (KFPs). Exploring these unconventional KFPs may expand the scope of effector-triggered immunity (ETI) and will have significant implications for crop improvement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号