desferriferrichrome

脱铁炉
  • 文章类型: Journal Article
    线虫诱导的诱捕装置的形成被认为是线虫诱捕真菌从腐生转变为食欲不振的生活方式的指标。然而,真菌杀线虫活性与真菌陷阱的形成并不完全同义。我们发现,主要的线虫诱捕真菌Arthrobotrys寡孢菌带有一个罕见的NRPS(Ao415)基因簇,该基因簇主要分布在线虫诱捕真菌中。Ao415基因推定编码一种具有独特结构域结构的蛋白质,与其他真菌中的其他NRPS不同。两个关键的生物合成基因Ao415和Ao414的突变结合非靶标代谢分析显示,Ao415基因簇负责异羟肟酸盐铁载体的生物合成,desferriferrichrome(1).脱铁醇(1)及其异羟肟酸盐前体(3)的缺乏可导致Fe3+含量显著增加,在没有线虫诱导剂的情况下诱导真菌陷阱的形成。此外,Fe3的添加大大改善了真菌陷阱的形成,但有害地导致陷阱破裂。添加1可显着减弱陷阱的形成,但增强了杀真菌线虫的活性。我们的发现表明,铁是陷阱形成的关键因素,并为线虫诱捕真菌中铁载体的潜在机制提供了新的见解。
    The formation of the trapping device induced by nematodes has been assumed as an indicator for a switch from saprophytic to predacious lifestyles for nematode-trapping fungi. However, fungal nematocidal activity is not completely synonymous with fungal trap formation. We found that the predominant nematode-trapping fungus Arthrobotrys oligospora harbored a rare NRPS (Ao415) gene cluster that was mainly distributed in nematode-trapping fungi. The gene Ao415 putatively encodes a protein with a unique domain organization, distinct from other NRPSs in other fungi. Mutation of the two key biosynthetic genes Ao415 and Ao414 combined with nontarget metabolic analysis revealed that the Ao415 gene cluster was responsible for the biosynthesis of a hydroxamate siderophore, desferriferrichrome (1). Lack of desferriferrichrome (1) and its hydroxamate precursor (3) could lead to significantly increased Fe3+ content, which induced fungal trap formation without a nematode inducer. Furthermore, the addition of Fe3+ strongly improved fungal trap formation but deleteriously caused broken traps. The addition of 1 significantly attenuated trap formation but enhanced fungal nematicidal activity. Our findings indicate that iron is a key factor for trap formation and provide a new insight into the underlying mechanism of siderophores in nematode-trapping fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本文旨在探讨AOL-s00215g415(Aog415)基因的功能,编码线虫诱捕真菌模型菌株A.寡孢子中铁载体的合成,为了了解铁载体生物合成与线虫诱捕活性之间的关系。经过序列分析,确定Aog415是铁载体合成NRPS。然后,该基因的产物被鉴定为异羟肟酸铁载体去铁erriferrichrome,使用质谱分析。当与WT菌株相比时,Aog415敲除菌株在发酵液中的铁载体含量降低了60%。此外,捕食环的数量减少了23.21%,而孢子产量增加了37.34%。Aog415的缺失不影响寡孢子囊在不同营养培养基中的生长。代谢组学分析显示,脂质代谢相关途径是Aog415破坏的主要目标。与WT相比,甘油磷脂水平的显著降低,在突变中观察到糖脂。脂肪酰基和氨基酸样分子的代谢改变被显著破坏。Aog415的敲除损害了异羟肟酸铁载体的生物合成,重塑了寡头孢菌中脂肪酸的流动,主要是重新编程细胞膜脂质代谢。Desferriferrichrome,异羟肟酸铁载体影响生长,通过调节铁的摄入和细胞膜稳态,使少孢菌的代谢和线虫捕获能力。我们的研究揭示了铁载体对生长和线虫捕获能力的重要贡献,并构建了铁载体生物合成之间的关系,寡孢菌的脂质代谢和线虫捕获活性,这为基于线虫诱捕真菌的线虫生物防治剂的开发提供了新的见解。
    The objective of this paper is to explore the function of the AOL-s00215g415 (Aog415) gene, which encodes for the synthesis of siderophore in the nematode trapping fungal model strain A. oligospora, in order to understand the relationship between siderophore biosynthesis and nematode trapping activity. After a through sequence analysis, it was determined that Aog415 is a siderophore-synthesizing NRPS. The product of this gene was then identified to be the hydroxamate siderophore desferriferrichrome, using mass spectrometry analysis. When compared to the WT strains, the Aog415 knockout strain exhibited a 60% decrease in siderophore content in fermentation broth. Additionally, the number of predatory rings of decreased by 23.21%, while the spore yield increased by 37.34%. The deletion of Aog415 did not affect the growth of A. oligospora in diverse nutrient medium. Lipid metabolism-related pathways were the primary targets of Aog415 disruption as revealed by the metabolomic analysis. In comparison to the WT, a significant reduction in the levels of glycerophospholipids, and glycolipids was observed in the mutation. The metabolic alteration in fatty acyls and amino acid-like molecules were significantly disrupted. The knockout of Aog415 impaired the biosynthesis of the hydroxamate siderophore desferriferrichrome, remodeled the flow of fatty acid in A. oligospora, and mainly reprogrammed the membrane lipid metabolism in cells. Desferriferrichrome, a hydroxamate siderophore affects the growth, metabolism and nematode trapping ability of A. oligospora by regulating iron intake and cell membrane homeostasis. Our study uncovered the significant contribution of siderophores to the growth and nematode trapping ability and constructed the relationship among siderophores biosynthesis, lipid metabolism and nematode trapping activity of A. oligospora, which provides a new insight for the development of nematode biocontrol agents based on nematode trapping fungi.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Nematode-trapping fungi are natural antagonists of nematodes. These predatory fungi are capable of switching their lifestyle from a saprophytic to predatory stage in the presence of nematodes by developing specialized trapping devices to capture and consume nematodes. The biochemical mechanisms of such predator-prey interaction have become increasingly studied given the potential application of nematode-trapping fungi as biocontrol agents, but the involved fungal metabolites remain underexplored. Here, we report a comprehensive liquid-chromatography mass spectrometry (LC-MS) metabolomics study on one hundred wild isolates of nematode-trapping fungi in three different species, Arthrobotrys oligospora, Arthrobotrys thaumasia, and Arthrobotrys musiformis. Molecular networking analysis revealed that the fungi were capable of producing thousands of metabolites, and such chemical diversity of metabolites was notably increased as the fungi switched lifestyle to the predatory stage. Structural annotations by tandem mass spectrometry revealed that those fungal metabolites belonged to various structural families, such as peptide, siderophore, fatty alcohol, and fatty acid amide, and their production exhibited species specificity. Several small peptides (<1.5 kDa) produced by A. musiformis in the predatory stage were found, with their partial amino acid sequences resolved by the tandem mass spectra. Four fungal metabolites (desferriferrichrome, linoleyl alcohol, nonadecanamide, and citicoline) that were significantly enriched in the predatory stage were identified and validated by chemical standards, and their bioactivities against nematode prey were assessed. The availability of the metabolomics datasets will facilitate comparative studies on the metabolites of nematode-trapping fungi in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号