cortical parcellation

皮质分裂
  • 文章类型: Journal Article
    细胞建筑学,器官和组织内的细胞组织,作为描绘各个区域的关键解剖学基础。它可以将皮质分割成具有独特结构和功能特征的不同区域。虽然传统的2D图集专注于通过单个切片对皮质区域进行细胞结构映射,复杂的皮质回旋和沟需要3D视角进行明确的解释。在这项研究中,我们使用荧光显微光学切片层析成像技术以0.65μm×0.65μm×3μm的分辨率获取整个猕猴大脑的建筑数据集。有了这些体积数据,皮质层状纹理在适当的视图平面中得到了显着呈现。此外,我们建立了一个立体坐标系来将细胞结构信息表示为基于表面的断层图像。利用这些细胞结构特征,我们能够将猕猴皮层三维地分成多个区域,这些区域表现出对比鲜明的建筑模式。还对小鼠进行了全脑分析,清楚地揭示了桶状皮质的存在并反映了该方法的生物学合理性。利用这些高分辨率连续数据集,我们的方法为探索大脑3D解剖结构的组织逻辑和病理机制提供了一个强大的工具。
    Cytoarchitecture, the organization of cells within organs and tissues, serves as a crucial anatomical foundation for the delineation of various regions. It enables the segmentation of the cortex into distinct areas with unique structural and functional characteristics. While traditional 2D atlases have focused on cytoarchitectonic mapping of cortical regions through individual sections, the intricate cortical gyri and sulci demands a 3D perspective for unambiguous interpretation. In this study, we employed fluorescent micro-optical sectioning tomography to acquire architectural datasets of the entire macaque brain at a resolution of 0.65 μm × 0.65 μm × 3 μm. With these volumetric data, the cortical laminar textures were remarkably presented in appropriate view planes. Additionally, we established a stereo coordinate system to represent the cytoarchitectonic information as surface-based tomograms. Utilizing these cytoarchitectonic features, we were able to three-dimensionally parcel the macaque cortex into multiple regions exhibiting contrasting architectural patterns. The whole-brain analysis was also conducted on mice that clearly revealed the presence of barrel cortex and reflected biological reasonability of this method. Leveraging these high-resolution continuous datasets, our method offers a robust tool for exploring the organizational logic and pathological mechanisms of the brain\'s 3D anatomical structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    新皮质是一个复杂的结构,具有不同的皮质亚层和区域。然而,皮层区域的精确定位可能是具有挑战性的,因为没有特殊的准备工作就没有明显的地标。为了应对这一挑战,我们开发了一个细胞建筑学地标识别管道。采用荧光显微光学切片层析成像方法对普通荧光核苷酸染料染色的整个小鼠脑进行成像。随后使用快速3D卷积网络来分割整个新皮层中的神经元体。通过方法,在3D中分析了皮质细胞结构和神经元形态,消除截面角度的影响。生成了分布图,将不同形态类型的神经元数量可视化,揭示了表征皮质区域地标的细胞建筑学景观,尤其是桶状皮层的典型信号模式。此外,使用产生的细胞结构标志将不同年龄的皮质区域对齐,表明桶状皮质在衰老过程中的结构变化。此外,我们观察到细长神经元的时空梯度分布,集中在初级视觉区域的深层,他们的比例随着时间的推移而下降。这些发现可以提高对大脑皮层的结构理解,为该方法的进一步探索铺平了道路。
    Neocortex is a complex structure with different cortical sublayers and regions. However, the precise positioning of cortical regions can be challenging due to the absence of distinct landmarks without special preparation. To address this challenge, we developed a cytoarchitectonic landmark identification pipeline. The fluorescence micro-optical sectioning tomography method was employed to image the whole mouse brain stained by general fluorescent nucleotide dye. A fast 3D convolution network was subsequently utilized to segment neuronal somas in entire neocortex. By approach, the cortical cytoarchitectonic profile and the neuronal morphology were analyzed in 3D, eliminating the influence of section angle. And the distribution maps were generated that visualized the number of neurons across diverse morphological types, revealing the cytoarchitectonic landscape which characterizes the landmarks of cortical regions, especially the typical signal pattern of barrel cortex. Furthermore, the cortical regions of various ages were aligned using the generated cytoarchitectonic landmarks suggesting the structural changes of barrel cortex during the aging process. Moreover, we observed the spatiotemporally gradient distributions of spindly neurons, concentrated in the deep layer of primary visual area, with their proportion decreased over time. These findings could improve structural understanding of neocortex, paving the way for further exploration with this method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    皮质分裂在阐明大脑组织中起着关键作用。尽管使用功能磁共振成像开发分割算法的努力越来越多,在个体内特异性和个体间一致性之间实现平衡被证明具有挑战性,制造高质量的一代,主题一致的皮质分裂特别难以捉摸。为了解决这个问题,本文提出了一种基于共识图表示学习的全自动个体皮层分割方法。该方法将谱嵌入和低秩张量学习集成到一个统一的优化模型中,它使用低秩张量学习捕获的组公共连接模式来优化受试者的功能网络。这不仅确保了不同受试者的大脑表征的一致性,而且还通过消除虚假连接来提高每个受试者的表征矩阵的质量。更重要的是,在此过程中,它实现了个体内特异性和个体间一致性之间的适应性平衡。在HumanConnectomeProject(HCP)的测试重测数据集上进行的实验表明,我们的方法在可重复性方面优于现有方法。功能同质性,并与任务激活对齐。在HCPS900数据集上进行的基于网络的广泛比较表明,与其他方法相比,从我们的皮层分割方法得出的功能网络在性别识别和行为预测方面具有更大的能力。
    Cortical parcellation plays a pivotal role in elucidating the brain organization. Despite the growing efforts to develop parcellation algorithms using functional magnetic resonance imaging, achieving a balance between intra-individual specificity and inter-individual consistency proves challenging, making the generation of high-quality, subject-consistent cortical parcellations particularly elusive. To solve this problem, our paper proposes a fully automated individual cortical parcellation method based on consensus graph representation learning. The method integrates spectral embedding with low-rank tensor learning into a unified optimization model, which uses group-common connectivity patterns captured by low-rank tensor learning to optimize subjects\' functional networks. This not only ensures consistency in brain representations across different subjects but also enhances the quality of each subject\'s representation matrix by eliminating spurious connections. More importantly, it achieves an adaptive balance between intra-individual specificity and inter-individual consistency during this process. Experiments conducted on a test-retest dataset from the Human Connectome Project (HCP) demonstrate that our method outperforms existing methods in terms of reproducibility, functional homogeneity, and alignment with task activation. Extensive network-based comparisons on the HCP S900 dataset reveal that the functional network derived from our cortical parcellation method exhibits greater capabilities in gender identification and behavior prediction than other approaches.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    功能近红外光谱(fNIRS)是一种广泛使用的成像方法,用于根据脑血流动力学绘制脑激活图。使用fNIRS数据对皮质激活的准确量化高度依赖于正确定位头皮表面上的光源和光电探测器的位置的能力。参与者头部大小和形状的变化极大地影响了这些光头的精确位置,因此,到达皮质表面的区域。因此,这种变化会影响NIRS研究中试图探索特定皮质区域的结论。为了保持每个NIRS信道的空间同一性,必须考虑NIRS阵列注册中特定受试者的差异。使用高密度漫射光学层析成像(HD-DOT),我们已经证明了相同HD-DOT阵列应用于10名静息状态参与者的受试者间变异性.我们还将使用特定于对象的定位信息获得的三维图像重建结果与使用通用光电二极管定位获得的结果进行了比较。为了减轻使用所有参与者的通用信息引入的错误,摄影测量法用于确定每个参与者的特定光点位置。本工作证明了受试者之间的巨大差异,即通过HD-DOT阵列中的等效通道对哪些皮质包裹进行采样。特别是,运动皮层录音遭受最大的光电二极管定位错误,通用和特定于受试者的光点之间的中值定位误差为27.4mm,导致包裹敏感度存在很大差异。这些结果说明了在所有可穿戴NIRS实验中收集特定对象的光电二极管位置的重要性。以便使用皮质分裂进行准确的群体水平分析。
    Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method for mapping brain activation based on cerebral hemodynamics. The accurate quantification of cortical activation using fNIRS data is highly dependent on the ability to correctly localize the positions of light sources and photodetectors on the scalp surface. Variations in head size and shape across participants greatly impact the precise locations of these optodes and consequently, the regions of the cortical surface being reached. Such variations can therefore influence the conclusions drawn in NIRS studies that attempt to explore specific cortical regions. In order to preserve the spatial identity of each NIRS channel, subject-specific differences in NIRS array registration must be considered. Using high-density diffuse optical tomography (HD-DOT), we have demonstrated the inter-subject variability of the same HD-DOT array applied to ten participants recorded in the resting state. We have also compared three-dimensional image reconstruction results obtained using subject-specific positioning information to those obtained using generic optode locations. To mitigate the error introduced by using generic information for all participants, photogrammetry was used to identify specific optode locations per-participant. The present work demonstrates the large variation between subjects in terms of which cortical parcels are sampled by equivalent channels in the HD-DOT array. In particular, motor cortex recordings suffered from the largest optode localization errors, with a median localization error of 27.4 mm between generic and subject-specific optodes, leading to large differences in parcel sensitivity. These results illustrate the importance of collecting subject-specific optode locations for all wearable NIRS experiments, in order to perform accurate group-level analysis using cortical parcellation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    皮质分裂长期以来一直是神经科学领域的基石,使大脑皮层被分割成不同的,促进复杂神经科学数据的解释和比较的非重叠区域。近年来,这些分组通常基于静息态功能磁共振成像(rsfMRI)数据的使用.并行,独立成分分析等方法长期以来一直被用于识别网络之间具有显著空间重叠的大规模功能网络。尽管两种形式的分解都利用了rsfMRI测量的相同的自发大脑活动,在不相交的皮质分区和全脑网络之间建立明确的关系方面仍然存在差距。为了解决这个问题,我们介绍了一个集成了NASCAR的新颖的分割框架,一种识别一系列功能性大脑网络的三维张量分解方法,通过最先进的图形表示学习来产生皮质分区,这些皮质分区表示与这些大脑网络一致的接近同质的功能区域。Further,通过使用张量分解,我们避免了传统方法在定义底层网络时假设统计独立性或正交性的局限性。我们的发现表明,就地块之间的功能连通性的同质性而言,这些分区与已建立的地图集具有可比性或优越性。任务对比度对齐,和建筑地图对齐。我们的方法管道是高度自动化的,允许在短短几分钟内快速适应新数据集和生成自定义分区,与需要大量手动输入的方法相比,这是一个显著的进步。我们描述了这种综合方法,我们称之为未驯服,作为认知和临床神经科学研究领域的工具。使用Untamed从HumanConnectomeProject数据集创建的分区,以及生成带有自定义包裹编号的地图集的代码,可在https://untamed-atlas上公开获得。github.io.
    Cortical parcellation has long been a cornerstone in the field of neuroscience, enabling the cerebral cortex to be partitioned into distinct, non-overlapping regions that facilitate the interpretation and comparison of complex neuroscientific data. In recent years, these parcellations have frequently been based on the use of resting-state fMRI (rsfMRI) data. In parallel, methods such as independent components analysis have long been used to identify large-scale functional networks with significant spatial overlap between networks. Despite the fact that both forms of decomposition make use of the same spontaneous brain activity measured with rsfMRI, a gap persists in establishing a clear relationship between disjoint cortical parcellations and brain-wide networks. To address this, we introduce a novel parcellation framework that integrates NASCAR, a three-dimensional tensor decomposition method that identifies a series of functional brain networks, with state-of-the-art graph representation learning to produce cortical parcellations that represent near-homogeneous functional regions that are consistent with these brain networks. Further, through the use of the tensor decomposition, we avoid the limitations of traditional approaches that assume statistical independence or orthogonality in defining the underlying networks. Our findings demonstrate that these parcellations are comparable or superior to established atlases in terms of homogeneity of the functional connectivity across parcels, task contrast alignment, and architectonic map alignment. Our methodological pipeline is highly automated, allowing for rapid adaptation to new datasets and the generation of custom parcellations in just minutes, a significant advancement over methods that require extensive manual input. We describe this integrated approach, which we refer to as Untamed, as a tool for use in the fields of cognitive and clinical neuroscientific research. Parcellations created from the Human Connectome Project dataset using Untamed, along with the code to generate atlases with custom parcel numbers, are publicly available at https://untamed-atlas.github.io.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类进化已经看到了高级认知和社会能力的发展,以及人类皮层独特的层状细胞结构。此外,早期皮质发育不良与各种神经发育疾病有关.尽管有这些联系,目前尚无无创技术可用于对详细的皮质层状结构进行成像.这项研究旨在通过引入一种对人类皮质层成像的方法来解决这一科学和临床差距。该方法将扩散-松弛多维MRI与量身定制的无监督机器学习方法相结合,引入了增强的微结构灵敏度。这种新的成像方法同时对微结构进行编码,局部化学成分,重要的是它们在复杂和异质组织中的相关性。为了验证我们的方法,我们比较了使用基于体外MRI的方法获得的皮层内皮层与死后人脑标本的Nissl染色获得的皮层内皮层。无监督学习与扩散-松弛相关性MRI的集成生成的图表明,对组织学中观察到的细胞结构特征的区域差异具有敏感性。重要的是,我们的观察揭示了特定层的扩散-弛豫特征,在更深的皮层水平上显示弛豫时间和扩散率的减少。这些发现表明髓鞘含量径向减少,细胞大小和各向异性变化,反映了细胞结构和骨髓结构的变化。此外,我们证明了一维弛豫和高阶扩散MRI标量指数,即使以多模式方式聚合和联合使用,无法解开皮质层。展望未来,我们的技术有可能为人类神经发育和神经发育中断引起的大量疾病的研究开辟新的途径。
    Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从MRI重建和分割皮质表面对于广泛的大脑分析至关重要。然而,大多数方法都遵循多步缓慢的过程,例如连续的球形膨胀和配准,这需要相当多的计算时间。为了克服这些多步骤产生的限制,我们提议SegRecon,一种集成的端到端深度学习方法,可以在一个步骤中直接从MRI体积中联合重建和分割皮质表面。我们训练一个基于体积的神经网络来预测,对于每个体素,到多个嵌套曲面的符号距离及其在图集空间中的相应球面表示。这是,例如,可用于联合重建和分割白色至灰质界面和灰质至CSF(pial)表面。我们通过在MindBoggle上进行的一组全面的实验来评估我们的表面重建和分割方法的性能,ABIDE和OASIS数据集。就Hausdorff到FreeSurfer生成的表面的平均距离而言,我们的重建误差小于0.52mm和0.97mm。同样,分组结果显示,相对于FreeSurfer,平均骰子提高了4%以上,除了观察到在标准桌面工作站上从数小时到数秒的计算速度急剧加快之外。
    Reconstructing and segmenting cortical surfaces from MRI is essential to a wide range of brain analyses. However, most approaches follow a multi-step slow process, such as a sequential spherical inflation and registration, which requires considerable computation times. To overcome the limitations arising from these multi-steps, we propose SegRecon, an integrated end-to-end deep learning method to jointly reconstruct and segment cortical surfaces directly from an MRI volume in one single step. We train a volume-based neural network to predict, for each voxel, the signed distances to multiple nested surfaces and their corresponding spherical representation in atlas space. This is, for instance, useful for jointly reconstructing and segmenting the white-to-gray-matter interface and the gray-matter-to-CSF (pial) surface. We evaluate the performance of our surface reconstruction and segmentation method with a comprehensive set of experiments on the MindBoggle, ABIDE and OASIS datasets. Our reconstruction error is found to be less than 0.52 mm and 0.97 mm in terms of average Hausdorff distance to the FreeSurfer generated surfaces. Likewise, the parcellation results show over 4% improvements in average Dice with respect to FreeSurfer, in addition to an observed drastic speed-up from hours to seconds of computation on a standard desktop station.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    比较结构神经解剖学是理解人脑结构和功能的基石。系统地与组织学组织的基本原理相关的分割框架是在物种之间进行结构比较的重要步骤。在目前的调查中,我们开发了一个比较分割推理系统(ComPaRe),这是人类和非人类灵长类动物大脑中的正式本体论系统,基于Brodmann详细描述的用于这两个物种的皮质细胞结构映射。ComPaRe为使用神经成像技术在人类和其他物种中绘制神经系统提供了理论基础。基于这种方法,我们修改了原始的哈佛-牛津地图集(HOA)大脑分割系统的方法,以产生人类(hHOA)和恒河猴(mHOA)大脑的比较框架,我们称之为HOA2.0-ComPaRe。此外,我们在公开可用的3D切片器平台中使用了专用的分割软件来分割单个人类和恒河猴的大脑。这种方法在单个大脑中产生定量的形态计量学部分。基于这些分割,我们为这两个物种创建了一个代表性的模板和3D大脑图谱,每个都基于一个主题。因此,HOA2.0-ComPaRe为使用神经成像技术在人类和其他物种中绘制神经系统提供了理论基础。同时也代表了对原始人类和猕猴HOA分割模式的重大修订。此处介绍的方法和图册可用于形态(体积)分析的基础和临床神经影像学,进一步生成地图集,以及功能和结构病变的定位。
    Comparative structural neuroanatomy is a cornerstone for understanding human brain structure and function. A parcellation framework that relates systematically to fundamental principles of histological organization is an essential step in generating structural comparisons between species. In the present investigation, we developed a comparative parcellation reasoning system (ComPaRe), which is a formal ontological system in human and non-human primate brains based on the cortical cytoarchitectonic mapping used for both species as detailed by Brodmann. ComPaRe provides a theoretical foundation for mapping neural systems in humans and other species using neuroimaging. Based on this approach, we revised the methodology of the original Harvard-Oxford Atlas (HOA) system of brain parcellation to produce a comparative framework for the human (hHOA) and the rhesus monkey (mHOA) brains, which we refer to as HOA2.0-ComPaRe. In addition, we used dedicated segmentation software in the publicly available 3D Slicer platform to parcellate an individual human and rhesus monkey brain. This method produces quantitative morphometric parcellations in the individual brains. Based on these parcellations we created a representative template and 3D brain atlas for the two species, each based on a single subject. Thus, HOA2.0-ComPaRe provides a theoretical foundation for mapping neural systems in humans and other species using neuroimaging, while also representing a significant revision of the original human and macaque monkey HOA parcellation schemas. The methodology and atlases presented here can be used in basic and clinical neuroimaging for morphometric (volumetric) analysis, further generation of atlases, as well as localization of function and structural lesions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    用组织学测量的细胞组成和组织结构的变化为将大脑划分为不同的细胞结构区域和表征神经病理学组织改变提供了生物学基础。显然,迫切需要开发能够非侵入性评估皮质细胞和骨髓结构特征的全脑神经放射学方法.平均表观传播子(MAP)MRI是一种临床上可行的扩散MRI方法,可有效,全面地量化组织中扩散的水分子的净微观位移。我们研究了高分辨率MAP-MRI对检测皮质细胞结构中区域和层状变化的敏感性,并将我们的结果与恒河猴整个大脑中相应组织学切片的观察结果进行了比较。MAP导出参数的高分辨率图像,特别是传播子各向异性(PA),非高斯(NG),并且返回轴概率(RTAP)揭示了皮质区域特定的分层模式,与相应的组织学染色切片非常吻合。在一些地区,与本研究中使用的五种组织学染色相比,MAP参数提供了更好的对比,在皮质区域和层状子结构之间更清晰地描绘边界和过渡区域。整个大脑皮层,各种MAP参数可用于描绘组织学观察到的特定皮质区域之间的过渡区域,并改善使用基于图谱配准的皮质分割估计的区域边界。使用基于表面的MAP参数分析,我们以一致且严格的方式量化了多个感兴趣区域中扩散传播子的皮质深度依赖性,这在很大程度上与皮质折叠几何形状无关。有效和非侵入性地评估皮质细胞结构特征的能力,其临床可行性,和可译性使高分辨率MAP-MRI成为研究全脑皮质组织的有前途的3D成像工具,表征皮质发育异常,改善神经退行性疾病的早期诊断,确定活检的目标,和补充神经病理学研究。
    The variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues. We investigate the sensitivity of high-resolution MAP-MRI to detecting areal and laminar variations in cortical cytoarchitecture and compare our results with observations from corresponding histological sections in the entire brain of a rhesus macaque monkey. High-resolution images of MAP-derived parameters, in particular the propagator anisotropy (PA), non-gaussianity (NG), and the return-to-axis probability (RTAP) reveal cortical area-specific lamination patterns in good agreement with the corresponding histological stained sections. In a few regions, the MAP parameters provide superior contrast to the five histological stains used in this study, delineating more clearly boundaries and transition regions between cortical areas and laminar substructures. Throughout the cortex, various MAP parameters can be used to delineate transition regions between specific cortical areas observed with histology and to refine areal boundaries estimated using atlas registration-based cortical parcellation. Using surface-based analysis of MAP parameters we quantify the cortical depth dependence of diffusion propagators in multiple regions-of-interest in a consistent and rigorous manner that is largely independent of the cortical folding geometry. The ability to assess cortical cytoarchitectonic features efficiently and non-invasively, its clinical feasibility, and translatability make high-resolution MAP-MRI a promising 3D imaging tool for studying whole-brain cortical organization, characterizing abnormal cortical development, improving early diagnosis of neurodegenerative diseases, identifying targets for biopsies, and complementing neuropathological investigations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与他人的智能交流以及隐蔽的意识思想要求我们将外部世界的表示与内部抽象概念相结合。通过感官知觉和运动执行与外部世界的相互作用被安排为时间和空间上的序列,而抽象思维和不变的范畴是独立的时刻。使用先进的基于MRI的光纤跟踪来自人类Connectome项目的183名参与者的高分辨率数据,我们确定了两个大型的超模态系统,包括特定的皮质区域和它们的连接纤维束;一个用于处理时间和空间序列的背侧系统,以及概念和类别的腹侧。我们发现两个中枢区域存在于大脑的执行前部和感知后部,这两个认知过程在这里汇合,构成一个双回路模型。中心位于皮质的本体和系统发育上最年轻的区域。我们认为这个集线器特征可以作为人类更抽象的语法意义的神经基础,即对于用所有认知域中的内容填充序列的系统。集线器将大脑前部和后部的两个独立系统(背侧和腹侧)结合在一起,并创建一个闭环。闭环促进了递归和前瞻性,我们使用两次;即,与他人交流不存在的事情和秘密思想。
    Intelligible communication with others as well as covert conscious thought requires us to combine a representation of the external world with inner abstract concepts. Interaction with the external world through sensory perception and motor execution is arranged as sequences in time and space, whereas abstract thought and invariant categories are independent of the moment. Using advanced MRI-based fibre tracking on high resolution data from 183 participants in the Human Connectome Project, we identified two large supramodal systems comprising specific cortical regions and their connecting fibre tracts; a dorsal one for processing of sequences in time and space, and a ventral one for concepts and categories. We found that two hub regions exist in the executive front and the perceptive back of the brain where these two cognitive processes converge, constituting a dual-loop model. The hubs are located in the onto- and phylogenetically youngest regions of the cortex. We propose that this hub feature serves as the neural substrate for the more abstract sense of syntax in humans, i.e. for the system populating sequences with content in all cognitive domains. The hubs bring together two separate systems (dorsal and ventral) at the front and the back of the brain and create a closed-loop. The closed-loop facilitates recursivity and forethought, which we use twice; namely, for communication with others about things that are not there and for covert thought.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号