complement control protein domain

  • 文章类型: Journal Article
    Complement is undeniably quintessential for innate immunity by detecting and eliminating infectious microorganisms. Recent work, however, highlights an equally profound impact of complement on the induction and regulation of a wide range of immune cells. In particular, the complement regulator CD46 emerges as a key sensor of immune activation and a vital modulator of adaptive immunity. In this review, we summarize the current knowledge of CD46-mediated signalling events and their functional consequences on immune-competent cells with a specific focus on those in CD4(+) T cells. We will also discuss the promises and challenges that potential therapeutic modulation of CD46 may hold and pose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The complement system contains a great deal of biological \"energy\". This is demonstrated by the atypical hemolytic uremic syndrome (aHUS), which is a thrombotic microangiopathy (TMA) characterized by endothelial and blood cell damage and thrombotic vascular occlusions. Kidneys and often also other organs (brain, lungs and gastrointestinal tract) are affected. A principal pathophysiological feature in aHUS is a complement attack against endothelial cells and blood cells. This leads to platelet activation and aggregation, hemolysis, prothrombotic and inflammatory changes. The attacks can be triggered by infections, pregnancy, drugs or trauma. Complement-mediated aHUS is distinct from bacterial shiga-toxin (produced e.g. by E. coli O:157 or O:104 serotypes) induced \"typical\" HUS, thrombotic thrombocytopenic purpura (TTP) associated with ADAMTS13 (an adamalysin enzyme) dysfunction and from a recently described disease related to mutations in intracellular diacylglycerol kinase ε (DGKE). Mutations in proteins that regulate complement (factor H, factor I, MCP/CD46, thrombomodulin) or promote (C3, factor B) amplification of its alternative pathway or anti-factor H antibodies predispose to aHUS. The fundamental defect in aHUS is an excessive complement attack against cellular surfaces. This can be due to 1) an inability to regulate complement on self cell surfaces, 2) hyperactive C3 convertases or 3) complement activation and coagulation promoting changes on cell surfaces. The most common genetic cause is in factor H, where aHUS mutations disrupt its ability to recognize protective polyanions on surfaces where C3b has become attached. Most TMAs are thus characterized by misdirected complement activation affecting endothelial cell and platelet integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号