chemodynamic therapy

化学动力学治疗
  • 文章类型: Journal Article
    氧化铈(CeO2-x)由于其丰富的氧空位而在光热和催化性能方面表现良好。基于此,我们设计了一个热敏治疗纳米平台,以实现肿瘤中药物的连续循环释放。它可以解决肿瘤治疗过程中底物不足造成的局限性。简而言之,将CeO2-x和喜树碱(CPT)包裹在琼脂糖水凝胶中,可以通过CeO2-x的光热效应熔化。同时,局部温度升高提供光热处理,可以诱导肿瘤细胞凋亡。之后,释放CPT以损伤肿瘤细胞中的DNA以实现化学治疗。此外,CPT可以激活烟酰胺腺嘌呤二核苷酸氧化酶与O2反应以增加细胞内H2O2。之后,暴露的CeO2-x可以催化H2O2产生细胞毒性活性氧,用于化学动力学治疗。更重要的是,CeO2-x可以催化H2O2生成O2,并与CPT的催化作用相结合,构建底物自循环纳米酶系统。总的来说,这种自循环纳米平台释放了肿瘤微环境中的缺氧,并建立了多模式肿瘤治疗,达到了理想的抗肿瘤效果。
    Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    智能纳米药物递送系统(Cu/ZIF-8@GOx-DOX@HA,以下为CZGDH),由掺杂Cu的沸石咪唑酯骨架8(Cu/ZIF-8,以下为CZ)组成,葡萄糖氧化酶(GOx),多柔比星(DOX),透明质酸(HA)用于肿瘤的靶向给药和协同治疗。CZGDH通过HA的靶向作用特异性进入肿瘤细胞,并表现出酸度触发的生物降解作用,随后释放GOx,DOX,和肿瘤微环境(TME)中的Cu2+。GOx氧化肿瘤细胞中的葡萄糖(Glu)以产生H2O2和葡萄糖酸用于饥饿治疗(ST)。DOX进入肿瘤内细胞核进行化疗(CT)。释放的Cu2+消耗肿瘤细胞中过表达的谷胱甘肽(GSH)以产生Cu+。生成的Cu+和H2O2引发类Fenton反应生成有毒的羟基自由基(·OH),这破坏了肿瘤细胞的氧化还原平衡,并有效地杀死了肿瘤细胞进行化学动力学治疗(CDT)。因此,通过TME激活的级联反应实现了协同多峰肿瘤治疗。纳米药物递送系统具有高的载药率(48.3wt%),三模式协同治疗对肿瘤细胞有很强的杀伤作用(67.45%)。
    An intelligent nanodrug delivery system (Cu/ZIF-8@GOx-DOX@HA, hereafter CZGDH) consisting of Cu-doped zeolite imidazolate framework-8 (Cu/ZIF-8, hereafter CZ), glucose oxidase (GOx), doxorubicin (DOX), and hyaluronic acid (HA) was established for targeted drug delivery and synergistic therapy of tumors. The CZGDH specifically entered tumor cells through the targeting effect of HA and exhibited acidity-triggered biodegradation for subsequent release of GOx, DOX, and Cu2+ in the tumor microenvironment (TME). The GOx oxidized the glucose (Glu) in tumor cells to produce H2O2 and gluconic acid for starvation therapy (ST). The DOX entered the intratumoral cell nucleus for chemotherapy (CT). The released Cu2+ consumed the overexpressed glutathione (GSH) in tumor cells to produce Cu+. The generated Cu+ and H2O2 triggered the Fenton-like reaction to generate toxic hydroxyl radicals (·OH), which disrupted the redox balance of tumor cells and effectively killed tumor cells for chemodynamic therapy (CDT). Therefore, synergistic multimodal tumor treatment via TME-activated cascade reaction was achieved. The nanodrug delivery system has a high drug loading rate (48.3 wt%), and the three-mode synergistic therapy has a strong killing effect on tumor cells (67.45%).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化学动力学治疗(CDT),一种通过催化过氧化氢(H2O2)转化为高毒性羟基自由基(·OH)来根除肿瘤细胞的方法,在肿瘤特异性和最小的副作用方面具有明显的优势。然而,目前,·OH的低生产效率阻碍了CDT的治疗效果。为了解决这个限制,本研究介绍了一种水溶性壳聚糖涂层W掺杂的MoOx(WMoOx/CS),设计用于光热疗法(PTT)与CDT结合的联合应用。通过水热法一步合成了W掺杂的MoOx(WMoOx),并用水溶性壳聚糖(羧化壳聚糖,CS)增强其生物相容性。WMoOx拥有高达52.66%的近红外光热转换效率,有效地将近红外辐射转化为热量。此外,WMoOx中的Mo4/Mo5和W5离子催化H2O2产生CDT的·OH,WMoOx中的Mo5/Mo6和W6离子降低了细胞内谷胱甘肽的水平,并阻止了谷胱甘肽对·OH的清除。至关重要的是,WMoOx/CS和近红外光照射的组合在体外和体内模型中都显示出有希望的协同抗肿瘤作用,强调其在PTT和CDT联合应用方面的潜力。
    Chemodynamic therapy (CDT), an approach that eradicates tumor cells through the catalysis of hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH), possesses distinct advantages in tumor specificity and minimal side effects. However, CDT\'s therapeutic efficacy is currently hampered by the low production efficiency of ·OH. To address this limitation, this study introduces a water-soluble chitosan-coated W-doped MoOx (WMoOx/CS) designed for the combined application of photothermal therapy (PTT) combined with CDT. The W-doped MoOx (WMoOx) was synthesized in one step by the hydrothermal method, and its surface was modified by water-soluble chitosan (carboxylated chitosan, CS) to enhance its biocompatibility. WMoOx boasts a high near-infrared photothermal conversion efficiency of 52.66 %, efficiently transducing near-infrared radiation into heat. Moreover, the Mo4+/Mo5+ and W5+ ions in WMoOx catalyze H2O2 to produce ·OH for CDT, and the Mo5+/Mo6+ and W6+ ions in WMoOx reduce intracellular glutathione levels and prevent the scavenging of ·OH by glutathione. Crucially, the combination of WMoOx/CS and near-infrared light irradiation demonstrates promising synergistic antitumor effects in both in vitro and in vivo models, highlighting its potential for the combined application of PTT and CDT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌性角膜炎是失明的最常见原因之一。目前,在临床环境中滥用抗生素不仅缺乏杀菌作用,而且容易引起细菌耐药性,使细菌性角膜炎的临床治疗成为重大挑战。在这项研究中,我们提出了一种可注射的水凝胶(GS-PNH-FF@CuS/MnS),含有自组装的二苯丙氨酸二肽(FF)和CuS/MnS纳米复合材料(CuS/MnSNCs),通过温和的光热疗法(PTT)的协同组合破坏细菌细胞壁,化学动力学疗法(CDT),离子释放化疗,和自组装的二肽接触,从而消除铜绿假单胞菌。在808nm激光照射下,GS-PNH-FF@CuS/MnS水凝胶对铜绿假单胞菌的体外杀菌效率可达96.97%。此外,GS-PNH-FF@CuS/MnS水凝胶局部应用于杀灭细菌,减少炎症,促进伤口愈合。苏木精-伊红(H&E)染色,Masson染色,免疫组织化学和免疫荧光染色用于评估体内对感染的兔角膜模型的治疗效果。GS-PNH-FF@CuS/MnS与人角膜上皮细胞表现出良好的生物相容性,并且没有明显的眼睛副作用。总之,本研究中的GS-PNH-FF@CuS/MnS水凝胶通过多模式方法为细菌性角膜炎提供了有效和安全的治疗策略。
    Bacterial keratitis is among the most prevalent causes of blindness. Currently, the abuse of antibiotics in clinical settings not only lacks bactericidal effects but also readily induces bacterial resistance, making the clinical treatment of bacterial keratitis a significant challenge. In this study, we present an injectable hydrogel (GS-PNH-FF@CuS/MnS) containing self-assembled diphenylalanine dipeptide (FF) and CuS/MnS nanocomposites (CuS/MnS NCs) that destroy bacterial cell walls through a synergistic combination of mild photothermal therapy (PTT), chemodynamic therapy (CDT), ion release chemotherapy, and self-assembled dipeptide contact, thereby eliminating Pseudomonas aeruginosa. Under 808 nm laser irradiation, the bactericidal efficiency of GS-PNH-FF@CuS/MnS hydrogel against P. aeruginosa in vitro reach up to 96.97 %. Furthermore, GS-PNH-FF@CuS/MnS hydrogel is applied topically to kill bacteria, reduce inflammation, and promote wound healing. Hematoxylin-eosin (H&E) staining, Masson staining, immunohistochemistry and immunofluorescence staining are used to evaluate the therapeutic effect on infected rabbit cornea models in vivo. The GS-PNH-FF@CuS/MnS demonstrate good biocompatibility with human corneal epithelial cells and exhibit no obvious eyes side effects. In conclusion, the GS-PNH-FF@CuS/MnS hydrogel in this study provides an effective and safe treatment strategy for bacterial keratitis through a multimodal approach.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    涉及使用金属纳米酶的化学动力学疗法(CDT)为治疗深层肿瘤提供了新的机会。然而,较低的ROS催化速率和对高H2O2浓度的依赖性影响治疗效果。为了解决这个问题,通过将Cu-Fe3O4纳米酶(NCs)和青蒿素(AS)与海藻酸钠(ALG)和钙离子原位共封装,构建了用于治疗骨肉瘤的水凝胶。这种水凝胶可以在肿瘤组织内长时间释放纳米颗粒和AS,利用NCs的多酶活性实现ROS积累。Fe2+/Cu2+与AS相互作用产生的碳自由基(•C)放大了氧化应激,导致肿瘤细胞损伤。同时,NCs通过消耗GSH通过GPX4途径激活铁凋亡,并通过引起细胞内铜过载通过DLAT途径激活铜凋亡,增强治疗效果。体外实验证实NCs-AS-ALG水凝胶具有优异的肿瘤细胞杀伤作用,而体内实验结果表明,它可以有效地消除肿瘤,具有优异的生物相容性,为骨肉瘤的治疗提供了新的途径。
    Chemodynamic therapy (CDT) involving the use of metal nanozymes presents new opportunities for the treatment of deep-seated tumors. However, the lower ROS catalytic rate and dependence on high H2O2 concentrations affect therapeutic efficacy. To address this issue, a hydrogel was constructed for the treatment of osteosarcoma by combining Cu-Fe3O4 nanozymes (NCs) and artemisinin (AS) coencapsulated in situ with sodium alginate (ALG) and calcium ions. This hydrogel can release nanoparticles and AS within tumor tissue for an extended period of time, utilizing the multienzyme activity of NCs to achieve ROS accumulation. The carbon radicals (•C) generated from the interaction of Fe2+/Cu2+ with AS amplify oxidative stress, leading to tumor cell damage. Simultaneously, the NCs activate ferroptosis via the GPX4 pathway by depleting GSH and activate cuproptosis via the DLAT pathway by causing intracellular copper overload, enhancing therapeutic efficacy. In vitro experiments confirmed that the NCs-AS-ALG hydrogel has an excellent tumor cell killing effect, while in vivo experimental results demonstrated that it can effectively eliminate tumors with excellent biocompatibility, providing a new approach for osteosarcoma treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目前,具有可激活的成像和治疗功能的特异性癌症反应性荧光探针在恶性肿瘤的准确诊断和有效治疗中非常需要。在这里,提出了一种多合一策略,通过使用多功能碱性磷酸酶(ALP)-反应聚集诱导发射(AIE)探针来实现荧光(FL)成像引导和协同化学动力学-光动力学癌症治疗,TPE-APP。通过响应癌细胞中ALP生物标志物的异常表达水平,AIE探针上的磷酸基团被选择性地水解,伴随着原位形成强发射性AIE聚集体,用于对正常细胞和具有强大化学动力学-光动力学活性的高活性醌甲基化物进行区分性癌细胞成像。因此,激活的AIE探针可以有效破坏癌细胞膜,并在30分钟内导致癌细胞死亡。在体外和体内证明了癌细胞消融的优异功效。癌症相关的生物标志物反应来源的判别FL成像和协同化学动力学-光动力学疗法有望为精确的图像引导癌症治疗提供有希望的途径。
    Currently, specific cancer-responsive fluorogenic probes with activatable imaging and therapeutic functionalities are in great demand in the accurate diagnostics and efficient therapy of malignancies. Herein, an all-in-one strategy is presented to realize fluorescence (FL) imaging-guided and synergetic chemodynamic-photodynamic cancer therapy by using a multifunctional alkaline phosphatase (ALP)-response aggregation-induced emission (AIE) probe, TPE-APP. By responding to the abnormal expression levels of an ALP biomarker in cancer cells, the phosphate groups on the AIE probe are selectively hydrolyzed, accompanied by in situ formation of strong emissive AIE aggregates for discriminative cancer cell imaging over normal cells and highly active quinone methide species with robust chemodynamic-photodynamic activities. Consequently, the activated AIE probes can efficiently destroy cancer cell membranes and lead to the death of cancer cells within 30 min. A superior efficacy in cancer cell ablation is demonstrated in vitro and in vivo. The cancer-associated biomarker response-derived discriminative FL imaging and synergistic chemodynamic-photodynamic therapy are expected to provide a promising avenue for precise image-guided cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一种基于透明质酸(HA)的纳米平台(CMGH)整合饥饿疗法(ST),化学动力学疗法(CDT),和用于靶向癌症治疗的光热疗法(PTT)。CMGH的制造涉及将葡萄糖氧化酶(GOx)封装在铜基金属有机骨架(CM)中,然后用HA进行表面改性。CMGH通过在肿瘤部位催化葡萄糖消耗发挥其抗肿瘤作用,导致肿瘤细胞饥饿,并伴随产生葡萄糖醛酸和H2O2。降低的pH和升高的H2O2促进了Cu离子的类芬顿反应,导致羟基自由基的产生。HA修饰使得能够通过CD44受体在肿瘤部位靶向积累CMGH。在近红外光照射下,CM具有光热转换能力,增强CMGH的抗肿瘤作用。体外和体内研究证明了CMGH对肿瘤生长的有效抑制。这项研究强调了CMGH作为靶向癌症治疗平台的潜力。
    We present a hyaluronic acid (HA)-based nanoplatform (CMGH) integrating starvation therapy (ST), chemodynamic therapy (CDT), and photothermal therapy (PTT) for targeted cancer treatment. CMGH fabrication involved the encapsulation of glucose oxidase (GOx) within a copper-based metal-organic framework (CM) followed by surface modification with HA. CMGH exerts its antitumor effects by catalyzing glucose depletion at tumor sites, leading to tumor cell starvation and the concomitant generation of glucuronic acid and H2O2. The decreased pH and elevated H2O2 promote the Fenton-like reaction of Cu ions, leading to hydroxyl radical production. HA modification enables targeted accumulation of CMGH at tumor sites via the CD44 receptor. Under near-infrared light irradiation, CM exhibits photothermal conversion capability, enhancing the antitumor effects of CMGH. In vitro and in vivo studies demonstrate the effective inhibition of tumor growth by CMGH. This study highlights the potential of CMGH as a targeted cancer therapeutic platform.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    努力提高肿瘤治疗的治疗效率,和金属有机框架(MOFs)在肿瘤治疗中显示出优异的潜力。由于反应条件的限制和不可避免的多药耐药性,单一疗法治疗肿瘤的效果有限。严重影响临床治疗效果。在这项研究中,我们选择以MOFs为药物载体构建多级联协同肿瘤给药系统MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag(MDTM@P-Ag)。在近红外(NIR)激光照射下,5,10,15,20-四(4-羧基苯基)卟啉(TCPP)和负载在MDTM@P-Ag上的AgNPs可以被激活以产生细胞毒性活性氧(ROS)并实现光热转化,从而有效诱导肿瘤细胞凋亡,实现光动力/光热联合治疗。一旦在肿瘤部位释放,二氧化锰(MnO2)可以在肿瘤的酸性微环境中催化过氧化氢(H2O2)分解生成氧气(O2),缓解肿瘤的缺氧环境。Fe3/Mn2将介导Fenton/Fenton样反应以产生细胞毒性羟基自由基(·OH),在消耗肿瘤中高浓度的谷胱甘肽(GSH)的同时,从而增强化学动力学治疗效果。成功制备的肿瘤药物传递系统及其在肿瘤治疗中良好的协同化学动力/光动力/光热治疗作用可以通过材料表征的实验结果来证明,性能测试和体外实验。
    Efforts have been made to improve the therapeutic efficiency of tumor treatments, and metal-organic frameworks (MOFs) have shown excellent potential in tumor therapy. Monotherapy for the treatment of tumors has limited effects due to the limitation of response conditions and inevitable multidrug resistance, which seriously affect the clinical therapeutic effect. In this study, we chose to construct a multiple cascade synergistic tumor drug delivery system MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag (MDTM@P-Ag) using MOFs as drug carriers. Under near-infrared (NIR) laser irradiation, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Ag NPs loaded on MDTM@P-Ag can be activated to generate cytotoxic reactive oxygen species (ROS) and achieve photothermal conversion, thus effectively inducing the apoptosis of tumor cells and achieving a combined photodynamic/photothermal therapy. Once released at the tumor site, manganese dioxide (MnO2) can catalyze the decomposition of hydrogen peroxide (H2O2) in the acidic microenvironment of the tumor to generate oxygen (O2) and alleviate the hypoxic environment of the tumor. Fe3+/Mn2+ will mediate a Fenton/Fenton-like reaction to generate cytotoxic hydroxyl radicals (·OH), while depleting the high concentration of glutathione (GSH) in the tumor, thus enhancing the chemodynamic therapeutic effect. The successful preparation of the tumor drug delivery system and its good synergistic chemodynamic/photodynamic/photothermal therapeutic effect in tumor treatment can be demonstrated by the experimental results of material characterization, performance testing and in vitro experiments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于过渡金属氧化物(TMO)的纳米酶由于其独特的催化特性和调节肿瘤微环境(TME)的能力,已成为抗肿瘤应用的有希望的工具。这篇综述的目的是概述基于TMO的纳米酶领域的最新进展,专注于它们的酶活性和参与的金属离子。这些纳米酶表现出过氧化氢酶(CAT)-,过氧化物酶(POD)-,超氧化物歧化酶(SOD)-,氧化酶(OXD)-,和谷胱甘肽氧化酶(GSH-OXD)样活性,使它们能够调节TME内的活性氧(ROS)水平和谷胱甘肽(GSH)浓度。基于TMO的纳米酶中广泛研究的过渡金属包括Fe,Mn,Cu,Ce,和混合的多金属氧化物,这也是总结。该评论重点介绍了几种创新的纳米酶设计及其多功能功能。尽管基于TMO的纳米酶取得了重大进展,长期生物安全等挑战,瞄准精度,催化机理,理论支持还有待解决,这些也进行了讨论。这篇综述有助于总结和理解基于TMO的纳米酶的快速发展,这对推进纳米医学和改善癌症治疗有着巨大的希望。
    Transition metal oxide (TMO)-based nanozymes have appeared as hopeful tools for antitumor applications due to their unique catalytic properties and ability to modulate the tumor microenvironment (TME). The purpose of this review is to provide an overview of the latest progress made in the field of TMO-based nanozymes, focusing on their enzymatic activities and participating metal ions. These nanozymes exhibit catalase (CAT)-, peroxidase (POD)-, superoxide dismutase (SOD)-, oxidase (OXD)-, and glutathione oxidase (GSH-OXD)-like activities, enabling them to regulate reactive oxygen species (ROS) levels and glutathione (GSH) concentrations within the TME. Widely studied transition metals in TMO-based nanozymes include Fe, Mn, Cu, Ce, and the hybrid multimetallic oxides, which are also summarized. The review highlights several innovative nanozyme designs and their multifunctional capabilities. Despite the significant progress in TMO-based nanozymes, challenges such as long-term biosafety, targeting precision, catalytic mechanisms, and theoretical supports remain to be addressed, and these are also discussed. This review contributes to the summary and understanding of the rapid development of TMO-based nanozymes, which holds great promise for advancing nanomedicine and improving cancer treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于细菌的抗肿瘤免疫已成为激活免疫系统以对抗癌症的有希望的策略。然而,细菌治疗的潜在应用受到细菌群体中不稳定和感染易感性的阻碍。此外,单一疗法在完全消除具有多种影响因素的复杂癌症方面无效。在这项研究中,基于我们发现凝结芽孢杆菌的孢子壳(SS)具有优异的肿瘤靶向能力和佐剂活性,我们开发了一种仿生孢子纳米平台来促进细菌介导的抗肿瘤治疗,化学动力学疗法和抗肿瘤免疫协同癌症治疗。详细来说,将SS与益生菌孢子分离,然后附着于负载有血红蛋白(Hb)的脂质体(Lipo)的表面,葡萄糖氧化酶(GOx)和JQ1构建SS@Lipo/Hb/GOx/JQ1。在肿瘤组织中,通过顺序催化反应产生高毒性的羟基自由基(•OH):GOx将葡萄糖催化成H2O2,将Hb中的Fe2催化将H2O2分解为•OH。·OH和SS佐剂的组合可以提高肿瘤的免疫原性并激活免疫系统。同时,JQ1介导的PD-L1下调和Hb诱导的缺氧缓解协同重塑免疫抑制肿瘤微环境并增强免疫应答。以这种方式,SS@Lipo/Hb/GOx/JQ1显著抑制肿瘤生长和转移。总结一下,纳米平台代表了增强基于细菌的癌症免疫治疗的最佳策略.
    Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H2O2 and Fe2+ in Hb decomposing H2O2 into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号