chemical probing

化学探测
  • 文章类型: Journal Article
    RNA分子及其复合物的结构对于在分子水平上理解生物学至关重要。解析这些结构是理解其从调节基因表达到催化生化过程的多种结构介导的功能的关键。预测RNA二级结构是准确建模其三维结构的前提和关键步骤。虽然专用建模软件正在取得快速和显著的进展,从序列中预测准确的二级结构仍然是一个挑战。通过掺入实验RNA结构探测数据可以显着提高它们的性能。已经开发了许多不同的化学和酶探针;然而,只有一组定量数据可以作为计算机辅助建模的约束。IPANEMAP是基于RNAfold的最新工作流程,可以考虑几个定量或定性数据集来建模RNA二级结构。本章详细介绍了流行的化学探测方法(DMS,CMCT,SHAPE-CE,和SHAPE-Map)以及使用IPANEMAP进行后续分析和结构预测。
    The structure of RNA molecules and their complexes are crucial for understanding biology at the molecular level. Resolving these structures holds the key to understanding their manifold structure-mediated functions ranging from regulating gene expression to catalyzing biochemical processes. Predicting RNA secondary structure is a prerequisite and a key step to accurately model their three dimensional structure. Although dedicated modelling software are making fast and significant progresses, predicting an accurate secondary structure from the sequence remains a challenge. Their performance can be significantly improved by the incorporation of experimental RNA structure probing data. Many different chemical and enzymatic probes have been developed; however, only one set of quantitative data can be incorporated as constraints for computer-assisted modelling. IPANEMAP is a recent workflow based on RNAfold that can take into account several quantitative or qualitative data sets to model RNA secondary structure. This chapter details the methods for popular chemical probing (DMS, CMCT, SHAPE-CE, and SHAPE-Map) and the subsequent analysis and structure prediction using IPANEMAP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    越来越明显的是,RNA采用的结构是构象动态的;RNA样品的各种结构状态控制着它们与其他核酸的相互作用,蛋白质,和配体来调节无数的生物过程。尽管已经开发了几种生物物理方法并用于研究结构化RNA的动态景观,由于可变的大小和灵活性,技术限制限制了它们在所有类型的RNA中的应用。将化学探测实验与下一代和直接测序相结合的最新进展已成为探索RNA构象动力学的替代方法。在这次审查中,我们提供了用于研究RNA构象动力学的基于测序的技术的方法学概述.我们讨论了不同的技术如何使我们能够更好地理解来自各种不同类别的RNA对多个构象状态进行采样的倾向。最后,我们提供了这些技术如何重塑我们对RNA结构的看法的例子。
    It has become increasingly evident that the structures RNAs adopt are conformationally dynamic; the various structured states that RNAs sample govern their interactions with other nucleic acids, proteins, and ligands to regulate a myriad of biological processes. Although several biophysical approaches have been developed and used to study the dynamic landscape of structured RNAs, technical limitations have limited their application to all classes of RNA due to variable size and flexibility. Recent advances combining chemical probing experiments with next-generation- and direct sequencing have emerged as an alternative approach to exploring the conformational dynamics of RNA. In this review, we provide a methodological overview of the sequencing-based techniques used to study RNA conformational dynamics. We discuss how different techniques have enabled us to better understand the propensity of RNAs from a variety of different classes to sample multiple conformational states. Finally, we present examples of the ways these techniques have reshaped how we think about RNA structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲型流感病毒(IAV)具有由与病毒核蛋白(NP)的多个拷贝相关的八个病毒RNA(vRNA)和病毒聚合酶复合物组成的分段基因组。尽管RNA结构在IAV复制中起着至关重要的作用,NP结合对vRNA结构的影响尚不清楚。在这项研究中,我们使用SHAPE化学探测来比较WSNIAV的NS和MvRNA在各种状态下的结构:在添加NP之前,在复杂的NP,然后去除NP。添加NP之前和去除后的RNA结构的比较表明,NP,在引入有限变化的同时,重塑vRNA中的局部结构和NSvRNA中的长程相互作用,提示潜在的生物学相关的RNA伴侣活性。相比之下,NP显著改变vRNA/NP复合物中vRNA的结构,尽管将实验数据纳入RNA二级结构预测被证明具有挑战性。最后,我们的结果表明,NP不仅结合单链RNA,而且与中断的螺旋,如凸起或小的内部回路,偏好G贫和富C/U地区。
    Influenza A viruses (IAVs) possess a segmented genome consisting of eight viral RNAs (vRNAs) associated with multiple copies of viral nucleoprotein (NP) and a viral polymerase complex. Despite the crucial role of RNA structure in IAV replication, the impact of NP binding on vRNA structure is not well understood. In this study, we employed SHAPE chemical probing to compare the structure of NS and M vRNAs of WSN IAV in various states: before the addition of NP, in complex with NP, and after the removal of NP. Comparison of the RNA structures before the addition of NP and after its removal reveals that NP, while introducing limited changes, remodels local structures in both vRNAs and long-range interactions in the NS vRNA, suggesting a potentially biologically relevant RNA chaperone activity. In contrast, NP significantly alters the structure of vRNAs in vRNA/NP complexes, though incorporating experimental data into RNA secondary structure prediction proved challenging. Finally, our results suggest that NP not only binds single-stranded RNA but also helices with interruptions, such as bulges or small internal loops, with a preference for G-poor and C/U-rich regions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    糖原磷酸化酶(GP)作为相同亚基的二聚体具有生物活性,每个被丝氨酸-14残基的磷酸化激活。GP存在三种可互换的形式,即GPa(二磷酸化形式),GPab(单磷酸化形式),和GPb(非磷酸化形式);然而,关于GPab的信息仍然很少。鉴于两种GP亚基共同确定其催化特性的普遍观点,必须进行GPab表征以获得对糖原分解调节的全面了解。因此,在本研究中,我们从GPb制备兔肌肉GPab,以磷酸化酶激酶为催化剂,并使用非放射性磷酸盐亲和凝胶电泳方法对其进行鉴定。与一半GPa/GPb混合物相比,制备的GPab显示出独特的AMP结合亲和力。为了进一步研究GP中的亚基间通信,其催化位点使用吡啶基胺化-麦芽六糖(包含GP的必需糊精结构的基于麦芽寡糖的底物;缩写为PA-0)和一系列特定修饰的PA-0衍生物(缺乏部分必需糊精结构的底物类似物)进行探测。通过比较PA-0衍生物(V衍生物)和PA-0(VPA-0)的初始反应速率,我们证明GPab的V衍生物/VPA-0比率与一半GPa/GPb混合物的比率显著不同.此结果表明,两个GP亚基之间的相互作用显着影响催化位点的底物识别,从而为GPab提供其独特的底物识别概况。
    Glycogen phosphorylase (GP) is biologically active as a dimer of identical subunits, each activated by phosphorylation of the serine-14 residue. GP exists in three interconvertible forms, namely GPa (di-phosphorylated form), GPab (mono-phosphorylated form), and GPb (non-phosphorylated form); however, information on GPab remains scarce. Given the prevailing view that the two GP subunits collaboratively determine their catalytic characteristics, it is essential to conduct GPab characterization to gain a comprehensive understanding of glycogenolysis regulation. Thus, in the present study, we prepared rabbit muscle GPab from GPb, using phosphorylase kinase as the catalyst, and identified it using a nonradioactive phosphate-affinity gel electrophoresis method. Compared with the half-half GPa/GPb mixture, the as-prepared GPab showed a unique AMP-binding affinity. To further investigate the intersubunit communication in GP, its catalytic site was probed using pyridylaminated-maltohexaose (a maltooligosaccharide-based substrate comprising the essential dextrin structure for GP; abbreviated as PA-0) and a series of specifically modified PA-0 derivatives (substrate analogs lacking part of the essential dextrin structure). By comparing the initial reaction rates toward the PA-0 derivative (Vderivative) and PA-0 (VPA-0), we demonstrated that the Vderivative/VPA-0 ratio for GPab was significantly different from that for the half-half GPa/GPb mixture. This result indicates that the interaction between the two GP subunits significantly influences substrate recognition at the catalytic sites, thereby providing GPab its unique substrate recognition profile.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    某些正义单链RNA病毒在其3'末端含有结构上模拟tRNA的元件。这些tRNA样结构(TLSs)基于哪些氨基酸通过宿主氨酰-tRNA合成酶共价添加到3'端进行分类。最近,来自溴花叶病毒(BMV)的代表性酪氨酸接受tRNA样结构(TLSTyr)的冷冻EM重建揭示了酪氨酰-tRNA合成酶对病毒反密码子模拟域的独特识别模式。Virgaviridae的大麦病毒属中的某些病毒也被酪氨酸选择性地氨基酰化,然而,这些TLSRNA在包含非典型反密码子环模拟物的5'结构域中具有不同的结构。在这里,我们提供的生物信息学和生化数据支持与Bromoviridae相比,大麦病毒TLSTyr的5'结构域具有独特的二级结构。尽管形成了不同的二级结构,5'结构域是实现强大的体外氨基酰化所必需的。此外,含有来自BMVTLSTyr的5'结构域和来自病菌TLSTyr的3'结构域的嵌合RNA被氨基酰化,说明了这些结构化RNA元件的模块化。我们认为,鼠疫病毒TLSTyr的结构上不同的5'结构域在模仿反密码子环中的作用与其在BMVTLSTyr中的对应物相同。最后,这些结构上和系统发育上不同类型的TLSTyr提供了对所有类型的病毒tRNA样结构之间的进化联系的洞察.
    Certain positive-sense single-stranded RNA viruses contain elements at their 3\' termini that structurally mimic tRNAs. These tRNA-like structures (TLSs) are classified based on which amino acid is covalently added to the 3\' end by host aminoacyl-tRNA synthetase. Recently, a cryoEM reconstruction of a representative tyrosine-accepting tRNA-like structure (TLSTyr) from brome mosaic virus (BMV) revealed a unique mode of recognition of the viral anticodon-mimicking domain by tyrosyl-tRNA synthetase. Some viruses in the hordeivirus genus of Virgaviridae are also selectively aminoacylated with tyrosine, yet these TLS RNAs have a different architecture in the 5\' domain that comprises the atypical anticodon loop mimic. Herein, we present bioinformatic and biochemical data supporting a distinct secondary structure for the 5\' domain of the hordeivirus TLSTyr compared to those in Bromoviridae Despite forming a different secondary structure, the 5\' domain is necessary to achieve robust in vitro aminoacylation. Furthermore, a chimeric RNA containing the 5\' domain from the BMV TLSTyr and the 3\' domain from a hordeivirus TLSTyr are aminoacylated, illustrating modularity in these structured RNA elements. We propose that the structurally distinct 5\' domain of the hordeivirus TLSTyrs performs the same role in mimicking the anticodon loop as its counterpart in the BMV TLSTyr Finally, these structurally and phylogenetically divergent types of TLSTyr provide insight into the evolutionary connections between all classes of viral tRNA-like structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甲型流感病毒基因组被分段为八个病毒RNA(vRNA)。已知vRNA的二级结构参与病毒增殖过程。全面的体外vRNA结构,在Virio,并在纤维素酶中进行了分析。然而,通过对比分析和统计建模可以提高结构图的分辨率。构建更高分辨率和可靠的RNA结构图可以识别病毒体中vRNA上未表征的功能结构基序。这里,我们使用硫酸二甲酯(DMS)-seq和通过引物延伸(SHAPE)-seq分析的选择性2\'-羟基酰化的组合,通过稳健的统计分析,建立了病毒体中vRNA二级结构的全局图。我们的高分辨率分析鉴定了区段6的核苷酸位置39-60处的茎环结构,并进一步验证了区段5的核苷酸位置87-130处的结构,该结构先前被预测为在计算机上形成假结结构。值得注意的是,当细胞被具有破坏结构的突变的重组病毒感染时,病毒基因组的复制和包装急剧减少。我们的结果提供了有关病毒体中甲型流感病毒基因组结构的全面和高分辨率信息,并证明了甲型流感病毒基因组上的功能性RNA结构基序与病毒基因组的适当复制和包装有关。
    The influenza A virus genome is segmented into eight viral RNAs (vRNA). Secondary structures of vRNA are known to be involved in the viral proliferation process. Comprehensive vRNA structures in vitro, in virio, and in cellulo have been analyzed. However, the resolution of the structure map can be improved by comparative analysis and statistical modeling. Construction of a more high-resolution and reliable RNA structure map can identify uncharacterized functional structure motifs on vRNA in virion. Here, we establish the global map of the vRNA secondary structure in virion using the combination of dimethyl sulfate (DMS)-seq and selective 2\'-hydroxyl acylation analyzed by primer extension (SHAPE)-seq with a robust statistical analysis. Our high-resolution analysis identified a stem-loop structure at nucleotide positions 39 - 60 of segment 6 and further validated the structure at nucleotide positions 87 - 130 of segment 5 that was previously predicted to form a pseudoknot structure in silico. Notably, when the cells were infected with recombinant viruses which possess the mutations to disrupt the structure, the replication and packaging of the viral genome were drastically decreased. Our results provide comprehensive and high-resolution information on the influenza A virus genome structures in virion and evidence that the functional RNA structure motifs on the influenza A virus genome are associated with appropriate replication and packaging of the viral genome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    有许多小(<100nt)RNA在生物学中发挥不同的功能作用。其中关键是转移RNA(tRNA),它是最古老的RNA之一,是生命每个领域的翻译装置的一部分。转移RNA也是修饰最严重的一类RNA。它们是必不可少的,它们的监管不善,由于突变序列或修饰丢失,会导致疾病。特别是由于与线粒体tRNA缺陷相关的严重表型,希望通过液滴例如脂质纳米颗粒或其他区室递送修复的tRNA是一个活跃的研究领域。在这里,我们描述了如何使用我们的tRNAStructure-seq方法在两种不同的生物学相关环境中研究tRNA和其他小RNA。富含肽的液滴和体内。
    There is a multitude of small (<100nt) RNAs that serve diverse functional roles in biology. Key amongst these is transfer RNA (tRNA), which is among the most ancient RNAs and is part of the translational apparatus in every domain of life. Transfer RNAs are also the most heavily modified class of RNAs. They are essential and their misregulation, due to mutated sequences or loss of modification, can lead to disease. Because of the severe phenotypes associated with mitochondrial tRNA defects in particular, the desire to deliver repaired tRNAs via droplets such as lipid nanoparticles or other compartments is an active area of research. Here we describe how to use our tRNA Structure-seq method to study tRNAs and other small RNAs in two different biologically relevant contexts, peptide-rich droplets and in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过引物延伸(SHAPE)分析的选择性2'-羟基酰化对RNA2'-羟基进行化学探测是一种快速有效的方法,可用于查询活细胞中的RNA结构。在逆转录时,化学修饰的位点可以编码为cDNA中的突变,一个叫做突变分析(MaP)的过程,使其能够通过高通量测序进行检测。本章介绍如何合成SHAPE探针2-氨基吡啶-3-羧酸咪唑(2A3),如何用它来探测活细菌中的RNA结构,以及如何生成Illumina兼容的SHAPE-MaP测序文库。该协议进一步描述了使用RNA框架的数据分析,从原始测序数据处理到实验驱动的RNA二级结构模型生成。
    Chemical probing of RNA 2\'-hydroxyl groups by selective 2\'-hydroxyl acylation analyzed by primer extension (SHAPE) is a rapid and powerful approach for querying RNA structures in living cells. At reverse transcription, sites of chemical modification can be encoded as mutations in the cDNA, a process called mutational profiling (MaP), enabling their detection via high-throughput sequencing. This chapter describes how to synthesize the SHAPE probe 2-aminopyridine-3-carboxylic acid imidazolide (2A3), how to use it to probe RNA structures in living bacteria, and how to generate Illumina-compatible SHAPE-MaP sequencing libraries. The protocol further describes data analysis using the RNA Framework, from raw sequencing data processing to experimentally-driven RNA secondary structure model generation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    7SK核糖核蛋白(RNP)是后生动物RNA聚合酶II(RNAPII)转录的动态和多功能调节因子。由非编码7SKRNA组成,核心蛋白,和许多辅助蛋白,最著名的7SKRNP功能是正转录延伸因子b(P-TEFb)的隔离和失活。最近,7SKRNP已显示通过P-TEFb非依赖性途径调节RNAPII转录。由于其在细胞功能中的基本作用,失调与包括癌症在内的人类疾病有关,心脏病,发育障碍,和病毒感染。7SKRNP结构生物学的重大进展提高了我们对7SKRNP组装和功能的理解。这里,我们回顾了在理解7SKRNA折叠的结构基础方面的进展,生物发生,和RNP组件。
    The 7SK ribonucleoprotein (RNP) is a dynamic and multifunctional regulator of RNA Polymerase II (RNAPII) transcription in metazoa. Comprised of the non-coding 7SK RNA, core proteins, and numerous accessory proteins, the most well-known 7SK RNP function is the sequestration and inactivation of the positive transcription elongation factor b (P-TEFb). More recently, 7SK RNP has been shown to regulate RNAPII transcription through P-TEFb-independent pathways. Due to its fundamental role in cellular function, dysregulation has been linked with human diseases including cancers, heart disease, developmental disorders, and viral infection. Significant advances in 7SK RNP structural biology have improved our understanding of 7SK RNP assembly and function. Here, we review progress in understanding the structural basis of 7SK RNA folding, biogenesis, and RNP assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号