cellulose hydrogels

  • 文章类型: Journal Article
    纤维素及其复合材料,尽管丰富且可持续,通常是脆性的,具有非常低的柔性/拉伸性。本研究报告了一种溶液处理方法来制备多孔,无定形,和弹性纤维素水凝胶和薄膜。溶解在水-ZnCl2混合物中的天然纤维素可以通过丙烯酸(AA)到聚(丙烯酸)(PAA)的原位聚合形成离子凝胶。添加至多30体积%的AA不会改变纤维素在水-ZnCl2混合物中的溶解度。聚合后,相互渗透网络的形成,由于PAA的化学交联以及纤维素/PAA和ZnCl2之间的离子/配位键合,透明,和离子导电水凝胶。这些水凝胶可用于可穿戴传感器,以检测拉伸下的机械变形,压缩,和弯曲。除去ZnCl2并干燥凝胶后,可获得的半透明无定形纤维素复合膜的杨氏模量高达4GPa。这些薄膜的再水化导致坚韧的形成,高弹性复合材料。含水量为3-10.5%,与纸一样坚固的含纤维素的薄膜也显示出弹性体的典型特征,其伸长率高达1300%。这种复合膜提供了解决天然聚合物的材料可持续性而不损害其机械性能的替代解决方案。
    Cellulose and its composites, despite being abundant and sustainable, are typically brittle with very low flexibility/stretchability. This study reports a solution processing method to prepare porous, amorphous, and elastic cellulose hydrogels and films. Native cellulose dissolved in a water-ZnCl2 mixture can form ionic gels through in situ polymerization of acrylic acid (AA) to poly(acrylic acid) (PAA). The addition of up to 30 vol % AA does not change the solubility of cellulose in the water-ZnCl2 mixture. After polymerization, the formation of interpenetrated networks, resulting from the chemical cross-linking of PAA and the ionic/coordination binding among cellulose/PAA and ZnCl2, gives rise to strong, transparent, and ionically conductive hydrogels. These hydrogels can be used for wearable sensors to detect mechanical deformation under stretching, compression, and bending. Upon removal of ZnCl2 and drying the gels, semitransparent amorphous cellulose composite films can be obtained with a Young\'s modulus of up to 4 GPa. The rehydration of these films leads to the formation of tough, highly elastic composites. With a water content of 3-10.5%, cellulose-containing films as strong as paper also show typical characteristics of elastomers with an elongation of up to 1300%. Such composite films provide an alternative solution to resolving the material sustainability of natural polymers without compromising their mechanical properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    纤维素水凝胶,由纤维素或其衍生物通过物理或化学交联形成三维网络,以其卓越的吸水能力和生物相容性而闻名。对可持续材料的不断增长的需求激发了人们对纤维素水凝胶的兴趣,归因于他们丰富的供应,生物降解性,和无毒的性质。这些特性突出了它们在包括生物医学在内的各个领域的广泛潜力,食品工业,和环境保护。纤维素水凝胶在药物递送等应用中特别有利,伤口敷料,和水处理。最近的大规模研究提高了我们对纤维素制备及其应用的理解。这篇综述深入研究了基本概念,制备技术,以及纤维素水凝胶在各个领域的应用现状。它还讨论了纳米木质素基水凝胶的最新进展,提供这种有前途的材料的全面概述,并为未来的研究和开发提供见解和指导。
    Cellulose hydrogels, formed either through physical or chemical cross-linking into a three-dimensional network from cellulose or its derivatives, are renowned for their exceptional water absorption capacities and biocompatibility. Rising demands for sustainable materials have spurred interest in cellulose hydrogels, attributed to their abundant supply, biodegradability, and non-toxic nature. These properties highlight their extensive potential across various sectors including biomedicine, the food industry, and environmental protection. Cellulose hydrogels are particularly advantageous in applications such as drug delivery, wound dressing, and water treatment. Recent large-scale studies have advanced our understanding of cellulose preparation and its applications. This review delves into the fundamental concepts, preparation techniques, and current applications of cellulose hydrogels in diverse fields. It also discusses the latest advances in nano-lignin-based hydrogels, providing a comprehensive overview of this promising material and offering insights and guidance for future research and development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Nowadays, skin biocompatible products are fast-growing markets for nanocelluloses with increasing number of patents published in last decade. This review highlights recent developments, market trends, safety assessments, and regulations for different nanocellulose types (i.e. nanoparticles, nanocrystals, nanofibers, nanoyarns, bacterial nanocellulose) used in skincare, cosmetics, and healthcare. The specific properties of nanocelluloses for skincare include high viscosity and shear thinning properties, surface functionality, dispersion stability, water-holding capacity, purity, and biocompatibility. Depending on their morphology (e.g. size, aspect ratio, geometry, porosity), nanocelluloses can be used as formulation modifiers, moisturizers, nanofillers, additives, membranes, and films. Nanocellulose composite particles were recently developed as carriers for bioactive compounds or UV-blockers and platforms for wound healing and skin sensors. As toxicological assessment depends on morphologies and intrinsic properties, stringent regulation is needed from the testing of efficient nanocellulose dosages. The challenges and perspectives for an industrial breakthrough are related to optimization of production and processing conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The exploiting of abundant natural polymers as potential absorbents for heavy metal ions is attracting. Cellulose is the most abundant natural polymer and exhibits amazing properties such as high chemical stability, hydrophilicity and biodegradability. However, some properties of pure cellulose-based materials including adsorbability are usually not enough, so it is important to improve their properties to broaden their applications. In the present work, hydroxyapitite (HAP) nanoparticles were prepared and introduced to improve the cellulose hydrogel (CG) properties. The structure and properties of the resultant cellulose/HAP nanocomposite hydrogels (CHG) were characterized and studied systematically. The results indicated that HAP nanoparticles was fixed and distributed evenly in CG. The maximum decomposition temperature increased gradually from 334.6 °C for CG to 346.7 °C for CHG, and the compressive strength increased gradually from 100 kPa for CG to 570 kPa for CHG with the increase of HAP content, respectively. Moreover, the adsorption capacity (qe) value of CHG towards Cu2+ could reach more than 300% higher than that of CG. As a potential absorbent, CHG exhibited relatively good recyclability of more than 78% after 10 cycles. Therefore, the introduction of HAP improved the properties of CG greatly, showing wide potential applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    当前的观点提出了使用纤维素水凝胶开发具有固定化益生菌的肠样生物反应器的前景。讨论了通过在肠样生物反应器中产生和维持pH和氧气梯度来使用水凝胶模拟人类肠道环境的创新概念。从根本上说,这种方法提供了使用生物反应器生产和递送多种益生菌菌株的新方法。讨论了制备多孔水凝胶的纤维素水凝胶的相关现有合成方法。在包封固定在纤维素水凝胶上的益生菌的背景下,讨论了多种菌株的收获方法。此外,我们还讨论了使用纤维素水凝胶封装益生菌的最新进展。这种观点还突出了纤维素水凝胶的益生菌保护机制。这种新型肠样水凝胶生物反应器将有可能在实验室中模拟人类肠道生态系统,并刺激对肠道微生物群的新研究。
    The current perspective presents an outlook on developing gut-like bioreactors with immobilized probiotic bacteria using cellulose hydrogels. The innovative concept of using hydrogels to simulate the human gut environment by generating and maintaining pH and oxygen gradients in the gut-like bioreactors is discussed. Fundamentally, this approach presents novel methods of production as well as delivery of multiple strains of probiotics using bioreactors. The relevant existing synthesis methods of cellulose hydrogels are discussed for producing porous hydrogels. Harvesting methods of multiple strains are discussed in the context of encapsulation of probiotic bacteria immobilized on cellulose hydrogels. Furthermore, we also discuss recent advances in using cellulose hydrogels for encapsulation of probiotic bacteria. This perspective also highlights the mechanism of probiotic protection by cellulose hydrogels. Such novel gut-like hydrogel bioreactors will have the potential to simulate the human gut ecosystem in the laboratory and stimulate new research on gut microbiota.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    A gradient anisotropic cellulose hydrogel was prepared by the diffusion of CaCl2 solution. The degree of orientation of the cellulose chains decreased along the ion diffusion direction, and the birefringence of the highly oriented area was up to 1.323×10-4. Importantly, we first propose and demonstrate the presence of sensitive region in the gradient anisotropy hydrogel. The sensitive region located in the order-disorder transition displayed large color variation with the optical path difference (R) range from 155 nm to 1200 nm, high sensitivity (1 % strain interval), low detection (minimum 1 % strain), good cycling ability of 50 times and frost resistance at -20℃. Based on this, the readable response colorimetric card was designed for micro-strain detection. The programmable Ca2+ diffusion design made it convenient to fabricate cylindrical and tubular hydrogels. This concept of sensitive region and this flexible strategy will broaden new horizons to materials that have excellent responsive properties for optical applications, sensors and multiscale bionics architectures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Sono-deviced rheometer,which enabled viscoelastic properties under ultrasound operation, was used to investigate for cellulosic hydrogels. The viscoelastic behavior was compared in cellulosic hydrogels prepared at 0.5, 1 and 2 wt% concentration in the DMAc/LiCl solution. The sono-deviced equipment could measure the effect of changes in storage modulus G\' and loss modulus G\" under 43 kHz ultrasound exposure. It was noted that the 43 kHz ultrasound significantly changed the values of the G\', meaning that the hydrogel was soften under the exposure within few seconds. When the ultrasound exposed 50 W of the out-put power at 1% strain, the G\' value of 4.2x104 Pa was reduced to 4.0x103 Pa during 5 min of the US interval. The declined lowering value of G\' then returned to the original moduli value when ultrasound was stopped. The values of both G\' and G\" values were measured at applied strain % during viscoelastic measurements of the cellulosic hydrogels without and with ultrasound exposure. The comparison indicated that the ultrasoundhas reinforced the effect of the mechanical deformationof the hydrogel structureat the smaller mechanical strain values appliedduring the ultrasound operation. The ultrasound soften effect onthe viscoelastic change efficiently occurred in the 0.5 wt% sample and easily induced the structural deformation probably due to the breakage of hydrogen bonds in the cellulose hydrogels.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Wrinkled hydrogels from biomass sources are potential structural biomaterials. However, for biorelated applications, engineering scalable, structure-customized, robust, and biocompatible wrinkled hydrogels with highly oriented nanostructures and controllable intervals is still a challenge. A scalable biomass material, namely cellulose, is reported for customizing anisotropic, all-cellulose, wrinkle-patterned hydrogels (AWHs) through an ultrafast, auxiliary force, acid-induced gradient dual-crosslinking strategy. Direct immersion of a prestretched cellulose alkaline gel in acid and relaxation within seconds allow quick buildup of a consecutive through-thickness modulus gradient with acid-penetration-directed dual-crosslinking, confirmed by visual 3D Raman microscopy imaging, which drives the formation of self-wrinkling structures. Moreover, guided by quantitative mechanics simulations, the structure of AWHs is found to exhibit programmable intervals and aligned nanostructures that differ between ridge and valley regions and can be controlled by tuning the prestretching strain and acid treatment time, and these AWHs successfully induce cell alignment. Thus, a new avenue is opened to fabricate polysaccharide-derived, programmable, anisotropic, wrinkled hydrogels for use as biomedical materials via a bottom-up method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    A colorimetric immunoassay is a powerful tool for detecting tumor markers, with outstanding advantages of visualization and convenience. This study designed a colorimetric immunoassay using the antibody/antigen to control the catalytic activity to be \"switched on/off\". This system, where Au NPs (18.5 ± 3.9 nm) were loaded on the g-C3N4 nanosheets that were fixed in a three-dimensional porous cellulose hydrogel, was used as a binding site for the antibody/antigen. After being incubated with an antibody of a cancer marker, the turned-off catalytic sites on Au NPs in Au@g-C3N4/microcrystalline cellulose hydrogels would not be \"turned on\" until the corresponding antigen was added. The number of the recovered Au active sites was related to the amount of the antigen added. The Fourier transform infrared and X-ray photoelectron spectroscopy measurements did not detect the existence of Au-S bonds. Catalyzed by the turned-on Au NPs, 4-nitrophenol was reduced to 4-aminophenol accompanied by a color fading. The color and the absorption spectrum changes in the process were used as the colorimetric quantitative basis for immunoassays. The colorimetric immunoassay showed a linear relationship with the liver cancer marker (α-fetoprotein, AFP) in the range of 0.1-10 000 ng/mL with the detection limit of 0.46 ng/mL. In addition, 4-nitrophenol had a significant color fading when the AFP concentration exceeded the healthy human threshold. The clinical patient\'s serum test results obtained from the developed colorimetric immunosensor were consistent with those obtained from the commercial enzyme-linked immunosorbent assay. Furthermore, the immunosensor exhibited a good selectivity, repeatability, and stability, which demonstrated its potential for practical diagnostic application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号