cell-cell adhesion

细胞 - 细胞粘附
  • 文章类型: Journal Article
    钙黏着蛋白是钙依赖性粘附蛋白,其通过桥接相邻细胞之间的间隙来建立和维持细胞间的机械接触。桥粒蛋白2(Dsg2)和桥粒蛋白2(Dsc2)是心脏桥粒中细胞-细胞接触的组织特异性钙粘蛋白同工型。DSG2基因和DSC2基因的突变与致心律失常性右心室心肌病(ARVC)有关,这是一种罕见但严重的心肌疾病。这里,野生型Dsg2,野生型Dsc2以及一个Dsg2-和两个Dsc2-变体的几种可能的同源和异源结合相互作用,每个都与ARVC相关,正在调查。使用单分子力谱(SMFS)和原子力显微镜(AFM)并应用Jarzynski的等式,可以确定Dsg2/Dsc2相互作用的动力学和热力学。Dsg2/Dsc2二聚化的自由能景观暴露了高活化能屏障,这与所提出的链交换结合基序一致。尽管结合基序不受任何突变的影响,相互作用的结合动力学与野生型显著不同。而野生型钙黏着蛋白的平均复合物寿命约为。涉及变体的0.3s相互作用始终显示-寿命明显更大。野生型相互作用的寿命产生了动态粘附界面的图像,该界面由连续解离和(重新)缔合的分子键组成,而涉及ARVC相关变体的相互作用的延迟结合动力学可能是发病机制的一部分。我们的数据提供了心脏钙粘蛋白结合的全面和一致的热力学和动力学描述,可以详细了解细胞粘附的分子机制。
    Cadherins are calcium dependent adhesion proteins that establish and maintain the intercellular mechanical contact by bridging the gap between adjacent cells. Desmoglein-2 (Dsg2) and desmocollin-2 (Dsc2) are tissue specific cadherin isoforms of the cell-cell contact in cardiac desmosomes. Mutations in the DSG2-gene and in the DSC2-gene are related to arrhythmogenic right ventricular cardiomyopathy (ARVC) a rare but severe heart muscle disease. Here, several possible homophilic and heterophilic binding interactions of wild-type Dsg2, wild-type Dsc2, as well as one Dsg2- and two Dsc2-variants, each associated with ARVC, are investigated. Using single molecule force spectroscopy (SMFS) with atomic force microscopy (AFM) and applying Jarzynski\'s equality the kinetics and thermodynamics of Dsg2/Dsc2 interaction can be determined. The free energy landscape of Dsg2/Dsc2 dimerization exposes a high activation energy barrier, which is in line with the proposed strand-swapping binding motif. Although the binding motif is not affected by any of the mutations, the binding kinetics of the interactions differ significantly from the wild-type. While wild-type cadherins exhibit an average complex lifetime of approx. 0.3 s interactions involving a variant consistently show - lifetimes that are substantially larger. The lifetimes of the wild-type interactions give rise to the picture of a dynamic adhesion interface consisting of continuously dissociating and (re)associating molecular bonds, while the delayed binding kinetics of interactions involving an ARVC-associated variant might be part of the pathogenesis. Our data provide a comprehensive and consistent thermodynamic and kinetic description of cardiac cadherin binding, allowing detailed insight into the molecular mechanisms of cell adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    上皮细胞之间的粘附使上皮组织在形态发生过程中具有显着的机械行为。然而,目前尚不清楚细胞间粘附如何影响静态和动态流动的融合上皮组织的力学。这里,我们系统地调节果蝇胚胎中E-cadherin介导的粘附,并研究在与体轴伸长相关的剧烈组织重塑和流动之前和期间对胚带上皮力学行为的影响。在轴伸长之前,我们发现,增加E-cadherin水平会产生包含更多细长细胞的组织,并预测会更像流体,提供减少的组织流动阻力。在轴伸长期间,我们发现E-cadherin的主要作用是调节细胞通过重排事件进行的速度。在轴伸长之前和期间,E-钙粘蛋白水平影响肌动球蛋白依赖力的模式,支持E-cadherin部分通过对肌动球蛋白的影响来调节组织力学的观点。值得注意的是,E-cadherin水平的4倍变化对整体组织结构和血流的影响相对较弱,这表明该系统对在形成完整组织的该范围内的绝对E-cadherin水平的变化具有耐受性。一起来看,这些发现揭示了E-cadherin介导的粘附在体内控制组织结构和动力学方面的双重作用,有时是相反的作用。这导致融合组织中粘连和流动之间的意外关系。
    Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    自身抗体与角质形成细胞表面抗原的结合,主要是桥粒复合物的桥粒3(Dsg3),导致寻常性天疱疮(PV)中细胞-细胞粘附的解离。在桥粒最初解体后,与细胞骨架和粘着斑相关的细胞-细胞粘附积极地重塑。越来越多的证据强调了粘附力学和机械转导在细胞-细胞粘附过程中的作用。因为它们的积极参与可能指导自身免疫致病性。然而,抗体结合后的大部分生物物理转化仍未充分开发。具体来说,尚不清楚桥粒和细胞间粘连的张力如何响应抗体而发生变化,以及改变的张力状态如何转化为细胞反应。这里,我们使用基于荧光共振能量转移(FRET)的张力传感器显示了Dsg3的张力损失,整个细胞-细胞粘附的张力损失,PV抗体结合后,细胞-细胞外基质粘连处的连接牵引力可能代偿性增加。Further,我们的数据表明,这种张力损失是由细胞-细胞接触时RhoA的抑制介导的,RhoA抑制的程度对于确定不同PV抗体之间致病性的严重程度可能是至关重要的。更重要的是,这种张力损失可以通过改变基于肌动球蛋白的细胞收缩性来部分恢复。总的来说,这些发现为我们理解在生理和自身免疫条件下控制细胞-细胞相互作用的机制提供了以前无法实现的细节,这可能为旨在恢复生理平衡到调节细胞-细胞粘附维持的张力动力学的全新疗法打开窗口。
    Binding of autoantibodies to keratinocyte surface antigens, primarily desmoglein 3 (Dsg3) of the desmosomal complex, leads to the dissociation of cell-cell adhesion in the blistering disorder pemphigus vulgaris (PV). After the initial disassembly of desmosomes, cell-cell adhesions actively remodel in association with the cytoskeleton and focal adhesions. Growing evidence highlights the role of adhesion mechanics and mechanotransduction at cell-cell adhesions in this remodeling process, as their active participation may direct autoimmune pathogenicity. However, a large part of the biophysical transformations after antibody binding remains underexplored. Specifically, it is unclear how tension in desmosomes and cell-cell adhesions changes in response to antibodies, and how the altered tensional states translate to cellular responses. Here, we showed a tension loss at Dsg3 using fluorescence resonance energy transfer (FRET)-based tension sensors, a tension loss at the entire cell-cell adhesion, and a potentially compensatory increase in junctional traction force at cell-extracellular matrix adhesions after PV antibody binding. Further, our data indicate that this tension loss is mediated by the inhibition of RhoA at cell-cell contacts, and the extent of RhoA inhibition may be crucial in determining the severity of pathogenicity among different PV antibodies. More importantly, this tension loss can be partially restored by altering actomyosin based cell contractility. Collectively, these findings provide previously unattainable details in our understanding of the mechanisms that govern cell-cell interactions under physiological and autoimmune conditions, which may open the window to entirely new therapeutics aimed at restoring physiological balance to tension dynamics that regulates the maintenance of cell-cell adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    集体细胞入侵(CCI),最具侵袭性的实体瘤,是癌细胞与其周围的细胞外基质(ECM)之间相互作用的新兴特性。然而,肿瘤群体总是由表达介导这种相互作用的粘附蛋白的可变水平的细胞组成,不允许直观地理解多细胞尺度的肿瘤侵袭性如何受到细胞-细胞和细胞-ECM粘附的空间异质性的影响。这里,我们使用了基于细胞Potts模型的多尺度计算框架,该框架是根据腺癌的组织病理学原理构建的。在早期对同质癌细胞群的研究中,这个框架揭示了相互作用的相对范围,包括驱动集体的细胞-细胞和细胞-ECM粘附,分散,和混合多式联运入侵。这里,我们构成了两个独立细胞亚群的肿瘤核心,这些细胞亚群显示了不同的细胞-细胞或细胞-ECM粘附强度。这两个细胞子集被排列为不同程度的空间混合,我们称之为异质性指数(HI)。我们观察到,低和高的亚群间细胞粘附有利于高HI和低HI混合群体的侵袭,具有不同的亚群内细胞-细胞粘附强度。分别。此外,对于细胞-ECM粘附强度的探索值,HI值高的人群总体上比HI值低的人群入侵得更好。然后我们询问如何通过逐渐混合的上皮细胞亚群来调节空间入侵,即,显示高细胞-细胞,但细胞-ECM粘附差,和间充质,即,与前者相反的粘合强度。这里也是,子集间粘连在说明HI和侵袭之间的比例关系中起着重要作用。对于异质细胞-ECM粘附的情况,可以看到这种关系的例外,其中具有较高ECM粘附力的细胞的外部定位较高的次最大HI模式比其相对较高的HI对应物更好地侵入。我们的模拟还揭示了粘附异质性如何证明集体入侵,当细胞-细胞或-ECM粘附类型变化时,但当两种粘附类型同时改变时,会导致侵入性分散。
    Collective cell invasion (CCI), a canon of most invasive solid tumors, is an emergent property of the interactions between cancer cells and their surrounding extracellular matrix (ECM). However, tumor populations invariably consist of cells expressing variable levels of adhesive proteins that mediate such interactions, disallowing an intuitive understanding of how tumor invasiveness at a multicellular scale is influenced by spatial heterogeneity of cell-cell and cell-ECM adhesion. Here, we have used a Cellular Potts model-based multiscale computational framework that is constructed on the histopathological principles of glandular cancers. In earlier efforts on homogenous cancer cell populations, this framework revealed the relative ranges of interactions, including cell-cell and cell-ECM adhesion that drove collective, dispersed, and mixed multimodal invasion. Here, we constitute a tumor core of two separate cell subsets showing distinct intra- and inter-subset cell-cell or cell-ECM adhesion strengths. These two subsets of cells are arranged to varying extents of spatial intermingling, which we call the heterogeneity index (HI). We observe that low and high inter-subset cell adhesion favors invasion of high-HI and low-HI intermingled populations with distinct intra-subset cell-cell adhesion strengths, respectively. In addition, for explored values of cell-ECM adhesion strengths, populations with high HI values collectively invade better than those with lower HI values. We then asked how spatial invasion is regulated by progressively intermingled cellular subsets that are epithelial, i.e., showed high cell-cell but poor cell-ECM adhesion, and mesenchymal, i.e., with reversed adhesion strengths to the former. Here too, inter-subset adhesion plays an important role in contextualizing the proportionate relationship between HI and invasion. An exception to this relationship is seen for cases of heterogeneous cell-ECM adhesion where sub-maximal HI patterns with higher outer localization of cells with stronger ECM adhesion collectively invade better than their relatively higher-HI counterparts. Our simulations also reveal how adhesion heterogeneity qualifies collective invasion, when either cell-cell or cell-ECM adhesion type is varied but results in an invasive dispersion when both adhesion types are simultaneously altered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞-细胞粘附在多细胞生物的发育和维持中起着至关重要的作用。它的功能之一是调节细胞迁移,如发生,例如在胚胎发生期间或在癌症中。在这项工作中,我们开发了一种通用的多尺度方法来对移动的自粘附细胞群进行建模,该方法将对确定性粘附驱动的运动分量的仔细微观描述与随机速度跳跃过程的有效介观表示相结合。这种方法以具有多个非局部的动力学输运方程的形式产生了介观模型。随后的抛物线和双曲线缩放会产生具有非局部粘附和近视扩散的一般方程式,一个特例是阿姆斯特朗等人提出的经典宏观模型。(J定理生物243(1):98-113,2006).我们的模拟显示了两种运动效果的组合如何展开。细胞-细胞粘附依赖于亚细胞细胞粘附分子的结合。我们的方法有助于方便地捕捉这种微观效应。在宏观尺度上,这导致了一个新类型的附加非线性积分方程,该方程与细胞密度方程耦合。
    Cell-cell adhesion plays a vital role in the development and maintenance of multicellular organisms. One of its functions is regulation of cell migration, such as occurs, e.g. during embryogenesis or in cancer. In this work, we develop a versatile multiscale approach to modelling a moving self-adhesive cell population that combines a careful microscopic description of a deterministic adhesion-driven motion component with an efficient mesoscopic representation of a stochastic velocity-jump process. This approach gives rise to mesoscopic models in the form of kinetic transport equations featuring multiple non-localities. Subsequent parabolic and hyperbolic scalings produce general classes of equations with non-local adhesion and myopic diffusion, a special case being the classical macroscopic model proposed in Armstrong et al. (J Theoret Biol 243(1): 98-113, 2006). Our simulations show how the combination of the two motion effects can unfold. Cell-cell adhesion relies on the subcellular cell adhesion molecule binding. Our approach lends itself conveniently to capturing this microscopic effect. On the macroscale, this results in an additional non-linear integral equation of a novel type that is coupled to the cell density equation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    桥粒是调节上皮和心肌机械完整性的细胞间连接。动态桥粒重塑对伤口愈合和发育至关重要,然而,控制连接组装的机制仍然难以捉摸。虽然我们和其他人已经表明钙粘蛋白胞外域是高度组织化的,这个有序的架构如何在组装过程中出现是未知的。使用荧光偏振显微镜,我们发现,桥粒2(Dsg2)胞外域顺序在组装的8小时内逐渐增加,与粘合强度增加相吻合。在划痕伤口分析中,我们观察到迁移细胞前缘的桥粒组装顺序有类似的增加。一起,我们的发现表明,钙黏着蛋白的组织是桥粒成熟的标志,可能在赋予粘附强度中起作用。
    Desmosomes are intercellular junctions that regulate mechanical integrity in epithelia and cardiac muscle. Dynamic desmosome remodeling is essential for wound healing and development, yet the mechanisms governing junction assembly remain elusive. While we and others have shown that cadherin ectodomains are highly organized, how this ordered architecture emerges during assembly is unknown. Using fluorescence polarization microscopy, we show that desmoglein 2 (Dsg2) ectodomain order gradually increases during 8 h of assembly, coinciding with increasing adhesive strength. In a scratch wound assay, we observed a similar increase in order in desmosomes assembling at the leading edge of migratory cells. Together, our findings indicate that cadherin organization is a hallmark of desmosome maturity and may play a role in conferring adhesive strength.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    循环肿瘤细胞与血管内皮细胞(ECs)的连接是癌症转移定植的关键步骤,导致转移性生长。乳腺癌和前列腺癌是女性和男性常见的恶性肿瘤,分别。这里,我们观察到β1-整合素是人前列腺癌和乳腺癌细胞在体外剪切应力条件下粘附到EC和在体内粘附到肺血管EC所必需的。我们将IQGAP1和神经Wiskott-Aldrich综合征蛋白(NWASP)鉴定为前列腺癌和乳腺癌细胞中β1整合素转录和蛋白表达的调节剂。癌细胞中的IQGAP1和NWASP消耗减少了体外对EC的粘附,并在体内保留在肺脉管系统和转移性肺结节形成中。机械上,NWASP和IQGAP1作用于Cdc42的下游,通过蛋白质水平的细胞外信号调节激酶(ERK)/粘着斑激酶信号传导以及通过与心肌素相关的转录因子/血清反应因子(SRF)转录增加β1-整联蛋白的表达。我们的结果确定IQGAP1和NWASP是减少早期转移扩散的潜在治疗靶点。
    Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that β1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of β1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase β1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    桥粒是将中间纤丝连接到质膜的多蛋白粘附复合物,确保细胞在组织中的机械完整性,但是他们如何参与更广泛的信令网络以发挥其全部功能尚不清楚。为了研究这一点,我们使用生物素化(BioID)进行了蛋白质邻近作图。必需桥粒蛋白desmocollin2a的联合节间,对Madin-Darby犬肾上皮细胞中的血红蛋白和脂蛋白2a(Pkp2a)进行了定位,它们的差异和共性表征为桥粒从Ca2依赖性成熟到成熟,Ca2+-非依赖性,超粘合状态,在组织中占主导地位。结果表明,单个桥粒蛋白在连接细胞信号传导途径方面具有不同的作用,并且当细胞改变其粘附状态时,这些作用会发生实质性变化。这些数据为桥粒的二元概念提供了进一步的支持,其中Pkp2a的属性与其他的属性不同,更稳定的蛋白质这些数据为桥粒功能的分析提供了宝贵的资源。
    Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    K-Ras是胰腺中最常见的Ras变异体,结肠和非小细胞肺腺癌。K-Ras中的活化突变导致活性Ras-GTP的量增加,并且随后导致效应蛋白和下游信号传导途径的过度活化。这里,我们证明,致癌K-Ras(V12)通过激活磷脂酰肌醇3-激酶(PI3-K)/Akt通路调节肿瘤细胞迁移,并通过上调Akt3诱导E-cadherin和神经细胞粘附分子(NCAM)的表达。体外相互作用和共沉淀测定将PI3-Kα鉴定为活性K-Ras4B而不是H-Ras或N-Ras的真正效应物,导致Akt磷酸化增强。此外,K-Ras(V12)诱导的PI3-K/Akt活化增强了所有分析细胞系中的迁移。有趣的是,蛋白质印迹分析Akt同工型特异性抗体以及qPCR研究显示,在表达EGFP-K-Ras(V12)的细胞克隆中,Akt3的量和活性显着增加,而Akt1和Akt2的量下调。为了更详细地研究每个Akt同工型的功能作用和同工型的可能串扰,PANC-1胰腺癌细胞和H23肺癌细胞中的每种同工型均稳定耗尽.Akt3是大多数细胞系中表达最少的Akt同工型,在Akt2耗尽的细胞中尤其上调和活跃。由于EGFP-K-Ras(V12)的表达通过诱导多唾液酸化的NCAM降低了E-cadherin介导的细胞-细胞粘附,Akt3作为E-钙黏着蛋白和NCAM的调节剂进行分析。蛋白质印迹分析显示Akt3-kd细胞中E-cadherin和NCAM显著减少,而Akt1和Akt2耗竭上调E-cadherin,尤其是H23肺癌细胞。总之,我们确定了致癌K-Ras4B是PI3-Kα-Akt信号传导的关键调节因子,Akt3是K-Ras4B诱导的E-cadherin和NCAM表达和定位的调节因子。
    K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    小儿高级别神经胶质瘤具有高度侵袭性,基本上无法治愈。胶质瘤细胞在神经元和神经胶质细胞之间迁移,沿着轴突束,并通过血管周围和pia下面的细胞外基质。对适应这种复杂环境的机制知之甚少。N-钙黏着蛋白在小儿神经胶质瘤中高表达,并与较短的生存期有关。我们发现细胞间同型N-钙粘蛋白相互作用根据微环境差异调节神经胶质瘤的迁移,刺激培养的神经元或星形胶质细胞的迁移,但抑制侵入重组或星形胶质细胞沉积的细胞外基质。N-钙粘蛋白定位于迁移的前导细胞之间的丝状连接,但定位于跟随者之间的上皮样连接。前导细胞具有更多的表面和循环N-钙粘蛋白,增加YAP1/TAZ信令,相对于追随者的扩散增加。随着领导者和追随者改变位置,YAP1/TAZ信号受到动态调节,导致N-钙粘蛋白水平和组织改变。一起,结果表明,小儿神经胶质瘤细胞通过调节N-cadherin动力学和细胞间接触来适应不同的微环境。
    小儿神经胶质瘤通过在神经细胞之间迁移或沿着血管利用细胞外基质侵入大脑。这项研究揭示了YAP1/TAZ信号和N-钙黏着蛋白之间的串扰,该蛋白调节神经和细胞外基质环境中的前导跟随细胞表型和迁移效率。
    Pediatric high-grade gliomas are highly invasive and essentially incurable. Glioma cells migrate between neurons and glia, along axon tracts, and through extracellular matrix surrounding blood vessels and underlying the pia. Mechanisms that allow adaptation to such complex environments are poorly understood. N-cadherin is highly expressed in pediatric gliomas and associated with shorter survival. We found that inter-cellular homotypic N-cadherin interactions differentially regulate glioma migration according to the microenvironment, stimulating migration on cultured neurons or astrocytes but inhibiting invasion into reconstituted or astrocyte-deposited extracellular matrix. N-cadherin localizes to filamentous connections between migrating leader cells but to epithelial-like junctions between followers. Leader cells have more surface and recycling N-cadherin, increased YAP1/TAZ signaling, and increased proliferation relative to followers. YAP1/TAZ signaling is dynamically regulated as leaders and followers change position, leading to altered N-cadherin levels and organization. Together, the results suggest that pediatric glioma cells adapt to different microenvironments by regulating N-cadherin dynamics and cell-cell contacts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号