biosensing

生物传感
  • 文章类型: Journal Article
    肿瘤转移在癌症治疗中提出了严峻的挑战,需要抗癌药物开发的有效工具。传统的2D细胞培养方法,虽然被认为是侵入性研究的“黄金标准”,在代表癌症标志和表型方面表现出局限性。本研究提出了一种创新方法,将3D肿瘤球体培养的优势与基于阻抗的生物传感技术相结合,建立了高通量3D细胞侵袭测定,用于通过多细胞肿瘤球体进行抗转移药物筛选。此外,xCELLigence装置用于监测细胞行为的时间依赖性动力学,包括依恋和侵入3D矩阵。此外,铁螯合剂(去铁胺)用于监测跨不同肿瘤细胞类型的3D球体中上皮-间质转化的抑制。上述结果表明,我们具有基于阻抗的传感的集成3D细胞侵袭测定可能是一种有前途的工具,可以通过提供强大的平台来预测抗转移药物的疗效和安全性,从而提高药物开发流程的质量。临床前或临床试验。
    Tumor metastasis presents a formidable challenge in cancer treatment, necessitating effective tools for anti-cancer drug development. Conventional 2D cell culture methods, while considered the \"gold standard\" for invasive studies, exhibit limitations in representing cancer hallmarks and phenotypes. This study proposes an innovative approach that combines the advantages of 3D tumor spheroid culture with impedance-based biosensing technologies to establish a high-throughput 3D cell invasion assay for anti-metastasis drug screening through multicellular tumor spheroids. In addition, the xCELLigence device is employed to monitor the time-dependent kinetics of cell behavior, including attachment and invasion out of the 3D matrix. Moreover, an iron chelator (deferoxamine) is employed to monitor the inhibition of epithelial-mesenchymal transition in 3D spheroids across different tumor cell types. The above results indicate that our integrated 3D cell invasion assay with impedance-based sensing could be a promising tool for enhancing the quality of the drug development pipeline by providing a robust platform for predicting the efficacy and safety of anti-metastatic drugs before advancing into preclinical or clinical trials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞培养是生物和临床前研究中基于细胞的测定的基本工具。细胞培养的测量,包括细胞计数,生存能力,和代谢活动,能反映培养条件下细胞的状况。传统的细胞培养和检测方法存在试剂和样品消耗量大等问题,无法实时监控细胞状态,难以时空调节细胞微环境。细胞阻抗传感器通过交流电测量细胞的电阻抗的变化,能够实时监测由细胞活动(如附着)引起的阻抗变化,增长,扩散,和移民。微流控芯片因减少复杂的生物过程而受到赞誉,集成多种分析模式,并实现检测的高度自动化。微流控芯片与细胞阻抗传感器的集成大大提高了细胞相关分析的能力和效率。本文综述了基于微流控芯片的阻抗传感器在二维和三维细胞系统中的应用,并总结了此类传感器在细胞生长研究中的研究进展。扩散,生存能力,代谢活动,和药物筛选。最后,这篇综述展望了未来的发展趋势和可能面临的挑战,为药物筛选中集成电阻抗传感器的微流控芯片的开发提供思路。
    Cell culture is a fundamental tool for cell-based assays in biological and preclinical research. The measurements of cell culture, including cell count, viability, and metabolic activity, can reflect the conditions of cells under culture conditions. The conventional cell culture and detection methods have problems such as high consumption of reagents and samples, inability to monitor cell status in real time, and difficulty in spatiotemporally adjusting the cell microenvironment. A cell impedance sensor measures changes in the electrical impedance of cells through alternating current, enabling real-time monitoring of impedance changes caused by cell activities such as attachment, growth, proliferation, and migration. Microfluidic chips are praised for reducing complex biological processes, integrating multiple analysis modes, and achieving high automation in detection. Integrating microfluidic chips with cell impedance sensors greatly improves the capability and efficiency of cell-related analysis. This review outlines the application of microfluidic chip-based impedance sensors in 2D and 3D cell systems and summarizes the research progress in application of such sensors in research on cell growth, proliferation, viability, metabolic activity, and drug screening. Finally, this review prospects the future development trends and possible challenges, providing ideas for the development of microfluidic chips integrated with electrical impedance sensors in drug screening.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑脊液(CSF)是一种可用于诊断各种疾病的体液。然而,CSF收集需要称为腰椎穿刺(LP)的侵入性和痛苦的程序。此程序适用于任何已知有中枢神经系统(CNS)损伤或神经退行性疾病风险的患者,不管他们的年龄范围。因此,这可能是一个非常痛苦的过程,尤其是婴儿和老年患者。另一方面,CSF中疾病生物标志物的检测使诊断尽可能准确.这篇综述旨在探索影响生物医学科学的新型电化学生物传感平台。生物传感器已经成为加速检测体液如CSF中已知生物标志物的技术。生物传感器可以根据其最终应用以各种方式和形状进行设计和修改,以检测和量化感兴趣的生物标志物。该过程还可以显著影响CSF的检测和诊断。因此,重要的是要了解这项技术在生物医学科学迅速发展的领域中的作用。
    Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    微生物食源性致病菌对公共卫生和食品工业提出了重大挑战,需要快速准确的检测方法来预防感染并确保食品安全。传统的单一生物传感技术通常在灵敏度方面表现出局限性,特异性,和速度。作为回应,对结合多种传感技术以增强功效的多模态生物传感方法越来越感兴趣。准确度,以及检测这些病原体的精确度。这篇综述调查了多模态生物传感技术的现状及其在食品工业中的潜在应用。各种多模态生物传感平台,比如光电化学,光学纳米材料,基于多种纳米材料的系统,混合生物传感微流体,和微加工技术进行了讨论。该评论对优势进行了深入分析,挑战,以及食源性病原体多模式生物传感的未来前景,强调其对食品安全和公共卫生的变革潜力。这项综合分析旨在促进制定创新战略,以应对食源性感染并确保全球食品供应链的可靠性。
    Microbial foodborne pathogens present significant challenges to public health and the food industry, requiring rapid and accurate detection methods to prevent infections and ensure food safety. Conventional single biosensing techniques often exhibit limitations in terms of sensitivity, specificity, and rapidity. In response, there has been a growing interest in multimodal biosensing approaches that combine multiple sensing techniques to enhance the efficacy, accuracy, and precision in detecting these pathogens. This review investigates the current state of multimodal biosensing technologies and their potential applications within the food industry. Various multimodal biosensing platforms, such as opto-electrochemical, optical nanomaterial, multiple nanomaterial-based systems, hybrid biosensing microfluidics, and microfabrication techniques are discussed. The review provides an in-depth analysis of the advantages, challenges, and future prospects of multimodal biosensing for foodborne pathogens, emphasizing its transformative potential for food safety and public health. This comprehensive analysis aims to contribute to the development of innovative strategies for combating foodborne infections and ensuring the reliability of the global food supply chain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA纳米技术利用RNA独特的化学和结构特性来构建具有动态和功能能力的纳米组装体和超分子结构。这篇综述的重点是构建RNA结构的设计和组装方法,用于增强稳定性和功能的RNA化学修饰,以及现代疗法中的应用,生物传感,和生物成像。
    RNA nanotechnology harnesses the unique chemical and structural properties of RNA to build nanoassemblies and supramolecular structures with dynamic and functional capabilities. This review focuses on design and assembly approaches to building RNA structures, the RNA chemical modifications used to enhance stability and functionality, and modern-day applications in therapeutics, biosensing, and bioimaging.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物的细胞内发育过程,特别是关于木质素聚合物的形成和生物质生产是由microRNAs(miRNA)调节。包括miR397b在内的miRNA对于开发高效且具有成本效益的生物燃料非常重要。然而,传统的miRNA表达监测方法,像PCR,是耗时的,需要样品提取,缺乏空间和时间分辨率,尤其是在现实世界中。我们提出了一种使用等离子体纳米传感来监测活植物细胞内miRNA活性而无需样品提取的新方法。使用表面增强拉曼散射(SERS)检测的等离子体生物传感器可提供高灵敏度和精确的分子信息。我们在具有高纵横比的独特银涂层金纳米棒(AuNR@Ag)上使用了反向分子前哨(iMS)生物传感器,以穿透植物细胞壁,以检测完整的活植物细胞中的miR397b。MiR397b过表达已显示出降低木质素含量的前景。因此,监测miR397b对于具有成本效益的生物燃料生产至关重要。这项研究首次证明了纳米棒iMS生物传感器的浸润和植物细胞内非天然miRNA397b的检测。该研究通过TEM和基于XRF的元素作图成功地证明了纳米棒iMS生物传感器的定位,用于本氏烟草植物细胞内的miRNA检测。该研究集成了位移激发拉曼差分光谱(SERDS),以减少背景干扰并增强目标信号提取。体内SERDS测试证实了用iMS纳米棒和miR397b靶标浸润后拟南芥叶片中miR397b的动态检测。这项概念验证研究是迈向空间分辨的重要垫脚石,细胞内miRNA作图以监测生物标志物和生物途径,以开发有效的可再生生物燃料来源。
    The intracellular developmental processes in plants, particularly concerning lignin polymer formation and biomass production are regulated by microRNAs (miRNAs). MiRNAs including miR397b are important for developing efficient and cost-effective biofuels. However, traditional methods of monitoring miRNA expression, like PCR, are time-consuming, require sample extraction, and lack spatial and temporal resolution, especially in real-world conditions. We present a novel approach using plasmonics nanosensing to monitor miRNA activity within living plant cells without sample extraction. Plasmonic biosensors using surface-enhanced Raman scattering (SERS) detection offer high sensitivity and precise molecular information. We used the Inverse Molecular Sentinel (iMS) biosensor on unique silver-coated gold nanorods (AuNR@Ag) with a high-aspect ratio to penetrate plant cell walls for detecting miR397b within intact living plant cells. MiR397b overexpression has shown promise in reducing lignin content. Thus, monitoring miR397b is essential for cost-effective biofuel generation. This study demonstrates the infiltration of nanorod iMS biosensors and detection of non-native miRNA 397b within plant cells for the first time. The investigation successfully demonstrates the localization of nanorod iMS biosensors through TEM and XRF-based elemental mapping for miRNA detection within plant cells of Nicotiana benthamiana. The study integrates shifted-excitation Raman difference spectroscopy (SERDS) to decrease background interference and enhance target signal extraction. In vivo SERDS testing confirms the dynamic detection of miR397b in Arabidopsis thaliana leaves after infiltration with iMS nanorods and miR397b target. This proof-of-concept study is an important stepping stone towards spatially resolved, intracellular miRNA mapping to monitor biomarkers and biological pathways for developing efficient renewable biofuel sources.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过它们在体外和体内的受调节的布尔逻辑运算,DNA逻辑电路在目标识别和疾病诊断方面显示出巨大的希望。然而,必须克服重大障碍,以提高其运营效率并扩大其应用范围。在这项研究中,我们提出了一种ExoIII供电的闭环DNA电路(ECDC)架构,该架构集成了四个高效的AND逻辑门。ECDC利用ExoIII作为唯一的酶激活致动器,简化电路设计并确保最佳性能。此外,使用ExoIII可以在此循环逻辑电路中的AND逻辑门之间的动态切换中实现自反馈(自动催化)机制。在验证信号流并检查每个AND逻辑门对电路调节的影响之后,我们展示了使用精心设计的ECDC架构在体外智能测定miR-21.拟议的ECDC对miR-21的线性检测范围为0至300nM,检测限(LOD)约为0.01nM,超过大多数报道的方法。它还显示了对miR-21检测的优异选择性,并具有识别和成像活癌细胞的潜力。这项研究提出了一种实用而有效的策略,用于通过特定的序列修饰在体外和体内监测各种基于核酸的生物标志物,为早期癌症诊断提供了巨大的潜力,生物分析,和预后临床应用。
    With their regulated Boolean logic operations in vitro and in vivo, DNA logic circuits have shown great promise for target recognition and disease diagnosis. However, significant obstacles must be overcome to improve their operational efficiency and broaden their range of applications. In this study, we propose an Exo III-powered closed-loop DNA circuit (ECDC) architecture that integrates four highly efficient AND logic gates. The ECDC utilizes Exo III as the sole enzyme-activated actuator, simplifying the circuit design and ensuring optimal performance. Moreover, the use of Exo III enables a self-feedback (autocatalytic) mechanism in the dynamic switching between AND logic gates within this circulating logic circuit. After validating the signal flow and examining the impact of each AND logic gate on the regulation of the circuit, we demonstrate the intelligent determination of miR-21 using the carefully designed ECDC architecture in vitro. The proposed ECDC exhibits a linear detection range for miR-21 from 0 to 300 nM, with a limit of detection (LOD) of approximately 0.01 nM, surpassing most reported methods. It also shows excellent selectivity for miR-21 detection and holds potential for identifying and imaging live cancer cells. This study presents a practical and efficient strategy for monitoring various nucleic acid-based biomarkers in vitro and in vivo through specific sequence modifications, offering significant potential for early cancer diagnosis, bioanalysis, and prognostic clinical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在线理解以自然语言编写的数字内容对于生活的许多方面都至关重要,包括学习,专业任务,和决策。然而,面对理解困难会对学习成果产生负面影响,批判性思维能力,决策,错误率,和生产力。本文介绍了一种创新的方法来预测本地内容级别的理解困难(例如,段落)。使用负担得起的可穿戴设备,我们从自主神经系统非侵入性地获得生理反应,特别是脉搏率变异性,和皮肤电活动。此外,我们整合了来自经济高效的眼动仪的数据。我们的机器学习算法识别对应于高认知负荷的内容和区域内的“热点”。这些热点代表了理解困难的实时预测因素。通过将生理数据与上下文信息(例如个人的经验水平)集成,我们的方法的准确率为72.11%±2.21,准确率为0.77,召回率为0.70,f1得分为0.73.这项研究为开发智能,认知意识接口。这样的接口可以提供即时的上下文支持,减轻内容中的理解挑战。无论是通过翻译,内容生成,或使用可用的大型语言模型进行内容摘要,这种方法有可能增强语言理解。
    Comprehending digital content written in natural language online is vital for many aspects of life, including learning, professional tasks, and decision-making. However, facing comprehension difficulties can have negative consequences for learning outcomes, critical thinking skills, decision-making, error rate, and productivity. This paper introduces an innovative approach to predict comprehension difficulties at the local content level (e.g., paragraphs). Using affordable wearable devices, we acquire physiological responses non-intrusively from the autonomous nervous system, specifically pulse rate variability, and electrodermal activity. Additionally, we integrate data from a cost-effective eye-tracker. Our machine learning algorithms identify \'hotspots\' within the content and regions corresponding to a high cognitive load. These hotspots represent real-time predictors of comprehension difficulties. By integrating physiological data with contextual information (such as the levels of experience of individuals), our approach achieves an accuracy of 72.11% ± 2.21, a precision of 0.77, a recall of 0.70, and an f1 score of 0.73. This study opens possibilities for developing intelligent, cognitive-aware interfaces. Such interfaces can provide immediate contextual support, mitigating comprehension challenges within content. Whether through translation, content generation, or content summarization using available Large Language Models, this approach has the potential to enhance language comprehension.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    自1996年球形核酸(SNAs)概念提出以来,众多的研究都集中在这一主题上,并取得了很大的进展。作为一种新的核酸传递系统,SNA比传统的脱氧核糖核酸(DNA)纳米结构具有优势,包括独立于转染试剂,对核酸酶的耐受性,降低免疫反应。SNAs的柔性结构证明了各种无机或有机材料可以作为核心,和不同类型的核酸可以缀合以实现不同的功能并实现令人惊讶和令人兴奋的结果。特殊的DNA纳米结构已被用于免疫调节,基因调控,药物输送,生物传感,和生物成像。尽管缺乏合理的设计策略,潜在的细胞毒性,和这种技术的结构缺陷,各种成功的例子证明了SNA在新材料等领域的光明和令人信服的未来,临床实践,和药房。
    Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    量子点(QD)的有利光学特性激发了它们在与成像和生物分析相关的各种应用中的用途。包括检测蛋白酶及其活性。最近的研究表明,量子点的表面化学能够调节蛋白酶的活性,但只是非特定的。这里,我们提出了一种策略,以选择性地加速特定靶蛋白酶的活性多达两个数量级。外位点结合“诱饵”肽来自跨越一系列生物学作用的蛋白质-底物,受体,和抑制剂-并用于增加QD-肽缀合物对凝血酶或因子Xa的亲和力,导致共结合底物的蛋白水解速率增加。与QD表面化学的影响不同,加速度对目标蛋白酶具有特异性,而其他蛋白酶的加速度可忽略不计。这种“诱饵和切割”传感方法的好处包括检测极限提高了一个数量级以上,在非目标蛋白水解的压倒性背景下重新启用目标蛋白酶的检测,和缓解抑制剂的作用。累积结果指向可推广的策略,加速的机制,设计诱饵肽和缀合物的考虑因素,并讨论了扩大这种方法范围的途径。总的来说,这项研究代表了在提高灵敏度和选择性的纳米颗粒酶传感器的合理设计方面迈出的重要一步.
    The advantageous optical properties of quantum dots (QDs) motivate their use in a wide variety of applications related to imaging and bioanalysis, including the detection of proteases and their activity. Recent studies have shown that surface chemistry on QDs is able to modulate protease activity, but only nonspecifically. Here, we present a strategy to selectively accelerate the activity of a particular target protease by as much as two orders of magnitude. Exosite-binding \"bait\" peptides were derived from proteins that span a range of biological roles─substrate, receptor, and inhibitor─and were used to increase the affinity of the QD-peptide conjugates for either thrombin or factor Xa, resulting in increased rates of proteolysis for coconjugated substrates. Unlike effects from QD surface chemistry, the acceleration was specific to the target protease with negligible acceleration of other proteases. Benefits of this \"bait and cleave\" sensing approach included detection limits that improved by more than an order of magnitude, reenabled detection of target protease against an overwhelming background of nontarget proteolysis, and mitigation of the action of inhibitors. The cumulative results point to a generalizable strategy, where the mechanism of acceleration, considerations for the design of bait peptides and conjugates, and routes to expanding the scope of this approach are discussed. Overall, this research represents a major step forward in the rational design of nanoparticle-based enzyme sensors that enhance sensitivity and selectivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号