bacterial motility

细菌运动性
  • 文章类型: Journal Article
    生物膜中的细菌分泌钾离子以吸引自由游泳细胞。然而,对钾的趋化性的基础仍然知之甚少。这里,使用微流体装置,我们发现大肠杆菌可以在钾浓度高的地区以毫摩尔的数量级迅速积累。使用珠子测定,我们测量了单个鞭毛马达对钾浓度逐步变化的动态响应,发现反应是由趋化性信号通路引起的。为了表征对钾的趋化反应,我们通过Förster共振能量转移(FRET)测定测量了剂量反应曲线和适应动力学,发现趋化性途径表现出对钾的敏感反应和快速适应。我们进一步发现两种主要的化学感受器Tar和Tsr对钾的反应不同。焦油受体表现出双相反应,而Tsr受体响应钾作为引诱剂。这些不同的反应与两种受体对细胞内pH变化的反应一致。灵敏的反应和快速的适应使细菌能够感知和定位钾浓度的微小变化。Tar和Tsr受体对钾的差异反应表明,处于不同生长阶段的细胞对钾的反应不同,并且对钾的需求可能不同。
    Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose-response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在自然环境中浸没在液体中的固体表面改变细菌游动行为并充当细菌形成生物膜的平台。在生物膜形成的初始阶段,细菌检测表面并增加第二信使c-di-GMP的细胞内水平,导致游泳速度降低。这种速度降低对细菌表面游泳的影响尚不清楚。在这项研究中,我们利用先进的显微镜技术来检查游泳速度对细菌表面游泳行为的影响。我们发现游泳速度的降低会减少细胞表面距离并延长表面捕获时间。这两种效应都将增强细菌表面感知并增加细胞粘附到表面的可能性,从而促进生物膜的形成。我们还检查了野生型大肠杆菌和铜绿假单胞菌的表面逃逸行为,注意到两种细菌之间不同的表面逃逸机制。
    目的:在生物膜形成的早期阶段,细菌识别表面并增加第二信使c-di-GMP的细胞内水平,导致游泳速度下降。这里,我们利用先进的显微镜技术来研究游泳速度对细菌表面游泳的影响,专注于大肠杆菌和铜绿假单胞菌。我们发现游泳速度的增加导致曲率半径的增加和表面滞留时间的减少。这些影响是通过流体动力学模型解释的,这是由于细胞表面距离随着游泳速度的增加而增加的结果。我们还观察到两种细菌之间不同的表面逃逸机制。我们的研究表明,游泳速度的降低可能会增加细胞粘附到表面的可能性,促进生物膜的形成。这揭示了游泳速度降低在从能动的细菌生活方式转变为久坐的细菌生活方式中的作用。
    Solid surfaces submerged in liquid in natural environments alter bacterial swimming behavior and serve as platforms for bacteria to form biofilms. In the initial stage of biofilm formation, bacteria detect surfaces and increase the intracellular level of the second messenger c-di-GMP, leading to a reduction in swimming speed. The impact of this speed reduction on bacterial surface swimming remains unclear. In this study, we utilized advanced microscopy techniques to examine the effect of swimming speed on bacterial surface swimming behavior. We found that a decrease in swimming speed reduces the cell-surface distance and prolongs the surface trapping time. Both these effects would enhance bacterial surface sensing and increase the likelihood of cells adhering to the surface, thereby promoting biofilm formation. We also examined the surface-escaping behavior of wild-type Escherichia coli and Pseudomonas aeruginosa, noting distinct surface-escaping mechanisms between the two bacterial species.
    OBJECTIVE: In the early phase of biofilm formation, bacteria identify surfaces and increase the intracellular level of the second messenger c-di-GMP, resulting in a decrease in swimming speed. Here, we utilized advanced microscopy techniques to investigate the impact of swimming speed on bacterial surface swimming, focusing on Escherichia coli and Pseudomonas aeruginosa. We found that an increase in swimming speed led to an increase in the radius of curvature and a decrease in surface detention time. These effects were explained through hydrodynamic modeling as a result of an increase in the cell-surface distance with increasing swimming speed. We also observed distinct surface-escaping mechanisms between the two bacterial species. Our study suggests that a decrease in swimming speed could enhance the likelihood of cells adhering to the surface, promoting biofilm formation. This sheds light on the role of reduced swimming speed in the transition from motile to sedentary bacterial lifestyles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    IVa型菌毛(T4aP)是普遍存在的细胞表面细丝,对表面运动性很重要,粘附到表面,DNA摄取,生物膜的形成,和毒力。T4aP由成千上万个主要菌毛亚基的副本制成,并由一个由次要菌毛组成的复合体倾斜,在某些系统中还有PilY1粘附素。虽然结构表征的T4aP的主要菌毛具有<165个残基的长度,黄花粘球菌的主要菌毛菌毛菌毛异常大,有208个残留物。所有主要菌毛都有一个保守的N端结构域和一个可变的C端结构域,和PilA的额外残基是由于较大的C末端结构域。我们使用cryo-EM以3.0µ的分辨率求解了M.xanthusT4aP(T4aPMx)的结构。T4aPMx遵循其他T4aP的结构蓝图,菌毛核心由相互作用的N末端α1螺旋组成,而球状区域装饰着T4aP表面。构建在此图中的PilA原子模型表明,与其他T4aP中的主要pilin相比,大的C末端结构域具有更广泛的亚基间接触。正如这些更大的接触所预期的那样,T4aPMx的弯曲和轴向刚度明显高于其他T4aP,并在不同刚度的表面上支持T4aP依赖的运动。值得注意的是,具有中断的亚基间界面的T4aPMx变体具有降低的弯曲刚度,菌毛长度,和强烈降低的运动。这些观察结果支持一种进化方案,即大型主要菌毛能够形成刚性T4aP,从而扩展了T4aP系统发挥作用的环境条件。
    Type IVa pili (T4aP) are ubiquitous cell surface filaments important for surface motility, adhesion to surfaces, DNA uptake, biofilm formation, and virulence. T4aP are built from thousands of copies of the major pilin subunit and tipped by a complex composed of minor pilins and in some systems also the PilY1 adhesin. While major pilins of structurally characterized T4aP have lengths of <165 residues, the major pilin PilA of Myxococcus xanthus is unusually large with 208 residues. All major pilins have a conserved N-terminal domain and a variable C-terminal domain, and the additional residues of PilA are due to a larger C-terminal domain. We solved the structure of the M. xanthus T4aP (T4aPMx) at a resolution of 3.0 Å using cryo-EM. The T4aPMx follows the structural blueprint of other T4aP with the pilus core comprised of the interacting N-terminal α1-helices, while the globular domains decorate the T4aP surface. The atomic model of PilA built into this map shows that the large C-terminal domain has more extensive intersubunit contacts than major pilins in other T4aP. As expected from these greater contacts, the bending and axial stiffness of the T4aPMx is significantly higher than that of other T4aP and supports T4aP-dependent motility on surfaces of different stiffnesses. Notably, T4aPMx variants with interrupted intersubunit interfaces had decreased bending stiffness, pilus length, and strongly reduced motility. These observations support an evolutionary scenario whereby the large major pilin enables the formation of a rigid T4aP that expands the environmental conditions in which the T4aP system functions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞外抗生素抗性基因(eARGs)在废水和天然水体中的环境传播引起了越来越多的生态学关注。已知水中共存的化学污染物会显著影响环境微生物群落的eARGs转移行为,但是到目前为止,详细的相互作用和具体影响仍然难以捉摸。这里,我们揭示了邻苯二甲酸二甲酯(DMP)和几种其他类型的邻苯二甲酸酯(从塑料中释放的常见水污染物)对eARGs自然转化的浓度依赖性影响。在与环境相关的浓度(10μg/L)下暴露DMP会使鲍氏不动杆菌的转化频率提高4.8倍,但在高浓度(1000μg/L)下严重抑制了转化。低浓度DMP的促进归因于多种机制,包括增加的细菌迁移率和膜通透性,以促进eARGs的摄取和改善的DMP结合的eARGs(通过非共价相互作用)对酶降解(抑制DNase活性)的抗性。在实际的废水和生物膜系统中也发现了DMP对eARGs转化的类似促进作用。相比之下,更高浓度的DMP通过破坏DNA结构来抑制eARGs转化。我们的发现强调了由于共存化学污染物的影响,在水生环境中传播的eARGs可能被低估,并加深了我们对废水和环境水体中生化联合污染风险的理解。
    The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们研究了透明多孔水凝胶在不同程度的约束下枯草芽孢杆菌的运动性。细菌在短时间内的动力学行为与描述水凝胶孔隙率的特征参数有关。均方位移(MSD)表明,随着限制的增加,无限制枯草芽孢杆菌的运行和翻转动力学逐渐转变为亚扩散运动。相应地,细菌的瞬时速度中位数降低,分布更窄,而重新定向率增加并达到平稳值。分析单轨迹,我们证明了平均动力学行为是复杂位移的结果,在其中活跃,扩散段和次扩散段共存。对于小范围和中等范围,活动段的数量减少,而扩散和亚扩散段增加。子扩散的交替,沿着相同轨迹的扩散和主动运动可以描述为跳跃广告捕捉运动,其中跳跃事件对应于沿轨迹的瞬时速度超过相应平均值的位移。与以前的观察不同,枯草芽孢杆菌通过主动运行以及扩散发生局部诱捕。有趣的是,扩散的贡献在中间限制是最大的。在足够长的时间内,可以使用最近提出的跳跃和捕获模型来再现在不同限制程度下从实验MSD估计的传输系数。最后,我们提出了一种定量关系,该关系通过水凝胶基质的特征约束长度将约束细菌和非约束细菌的中值速度联系起来。我们的工作为模拟自然环境的复杂介质中的细菌运动性提供了新的见解,并且与灭菌等重要问题相关,净水,生物膜的形成,膜渗透和细菌分离。
    We investigate the motility of B. subtilis under different degrees of confinement induced by transparent porous hydrogels. The dynamical behavior of the bacteria at short times is linked to characteristic parameters describing the hydrogel porosity. Mean squared displacements (MSDs) reveal that the run-and-tumble dynamics of unconfined B. subtilis progressively turns into sub-diffusive motion with increasing confinement. Correspondingly, the median instantaneous velocity of bacteria decreases and becomes more narrowly distributed, while the reorientation rate increases and reaches a plateau value. Analyzing single-trajectories, we show that the average dynamical behavior is the result of complex displacements, in which active, diffusive and sub-diffusive segments coexist. For small and moderate confinements, the number of active segments reduces, while the diffusive and sub-diffusive segments increase. The alternation of sub-diffusion, diffusion and active motion along the same trajectory can be described as a hopping ad trapping motion, in which hopping events correspond to displacements with an instantaneous velocity exceeding the corresponding mean value along a trajectory. Different from previous observations, escape from local trapping occurs for B. subtilis through active runs but also diffusion. Interestingly, the contribution of diffusion is maximum at intermediate confinements. At sufficiently long times transport coefficients estimated from the experimental MSDs under different degrees of confinement can be reproduced using a recently proposed hopping and trapping model. Finally, we propose a quantitative relationship linking the median velocity of confined and unconfined bacteria through the characteristic confinement length of the hydrogel matrix. Our work provides new insights for the bacterial motility in complex media that mimic natural environments and are relevant to important problems like sterilization, water purification, biofilm formation, membrane permeation and bacteria separation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    群集运动性是致病性鞭毛细菌作为毒力因子用于定植表面并对宿主造成损害的一种运动。副溶血性弧菌是一种致病性鞭毛细菌,通过从游泳者转变为蜂群细胞来增加其毒力。致病性副溶血性弧菌的宿主包括养殖虾。因此,检测和量化这种运动的方法对于控制致病性副溶血弧菌引起的对虾疾病具有重要意义。我们通过确定最佳的琼脂类型开发了一种优化的成群运动试验,和培养基的干燥时间,琼脂浓度和细菌培养物的体积,以在24小时孵育期间在培养皿上副溶血性弧菌的迁移过程中实现最快的群集运动。该方法包括数据分析,可用作通过比较用产品处理的细菌的成群晕的线性化直径的斜率来识别潜在的抗毒力产品的工具,它们在培养皿上经过24小时的潜伏期迁移。在这里我们报告:•一种检测和定量副溶血性弧菌的成群运动晕的简单方法。•可用作识别潜在抗毒力产品的工具的方法。
    Swarming motility is a type of movement used by pathogenic flagellated bacteria as virulence factor to colonize surfaces and cause damage to the host. Vibrio parahaemolyticus is a pathogenic flagellated bacterium that increases its virulence by switching from swimmer to swarming cells. The hosts of pathogenic V. parahaemolyticus include farmed shrimp. Therefore, methods to detect and quantify this movement are important to control shrimp diseases caused by pathogenic V. parahaemolyticus strains. We developed an optimized swarming motility assay by identifying the most optimal type of agar, and drying time of the culture medium, agar concentration and volume of the bacterial culture to achieve the fastest swarming motility during the migration of V. parahaemolyticus on Petri dishes during a 24-hour incubation period. The method includes data analysis that could be used as a tool to identify potential anti-virulence products by comparing the slopes of the linearized diameters of the swarming halos of bacteria treated with the products, as they migrate on Petri dishes over a 24-hour incubation period. Here we report:•A simple method for detection and quantification of swarming motility halos of V. parahaemolyticus bacteria.•A method that could be used as a tool to identify potential anti-virulence products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    根据环境线索调整运动模式对于细菌存活很重要。黄药粘球菌,一种通过滑动和抽搐机制在表面上移动的细菌,响应于诸如基底刚度和细胞-细胞接触的机械线索来调节其前后极性的反转频率。在这项研究中,我们认为,黄山的滑翔机械在力产生过程中会感应到环境机械线索,并相应地调节细胞逆转。为了检验我们的假设,我们扩展了现有的M.xanthus中周期性极性反转的数学模型,结合了滑翔机械的细胞内动力学以及滑翔机械与关键极性调节剂之间的相互作用的实验数据。该模型成功地再现了在黄体滑翔中观察到的细胞反转频率对底物刚度的依赖性。我们进一步提出了滑翔和抽搐运动机制之间的逆转控制网络,以解释在具有两种运动机制的野生型黄体细胞中观察到的相反的逆转响应。这些结果为未来的实验研究提供了可测试的预测。总之,我们的模型表明,山药中的滑翔机械可以作为机械传感器,它将机械线索转化为细胞反转信号。
    Adjusting motility patterns according to environmental cues is important for bacterial survival. Myxococcus xanthus, a bacterium moving on surfaces by gliding and twitching mechanisms, modulates the reversal frequency of its front-back polarity in response to mechanical cues like substrate stiffness and cell-cell contact. In this study, we propose that M. xanthus\'s gliding machinery senses environmental mechanical cues during force generation and modulates cell reversal accordingly. To examine our hypothesis, we expand an existing mathematical model for periodic polarity reversal in M. xanthus, incorporating the experimental data on the intracellular dynamics of the gliding machinery and the interaction between the gliding machinery and a key polarity regulator. The model successfully reproduces the dependence of cell reversal frequency on substrate stiffness observed in M. xanthus gliding. We further propose reversal control networks between the gliding and twitching motility machineries to explain the opposite reversal responses observed in wild type M. xanthus cells that possess both motility mechanisms. These results provide testable predictions for future experimental investigations. In conclusion, our model suggests that the gliding machinery in M. xanthus can function as a mechanosensor, which transduces mechanical cues into a cell reversal signal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    游过粘性流体,鞭毛细菌必须通过旋转鞭毛或一束多个鞭毛来克服其身体上的液体阻力。因为阻力随着细菌的大小而增加,从理论上讲,细菌的游泳速度与其体长成反比。然而,尽管进行了广泛的研究,鞭毛细菌的基本大小-速度关系尚不清楚,不同实验报告的结果相互矛盾.这里,通过批判性地审查现有的证据并协同我们自己的大样本量实验,流体动力学建模,和模拟,我们证明了大肠杆菌的平均游泳速度,一个主要的细菌模型,与它们的身体长度无关。我们的定量分析表明,这种违反直觉的关系是由体长与细菌鞭毛数量之间的线性相关所决定的集体鞭毛动力学的结果。值得注意的是,我们的研究揭示了细菌如何利用越来越多的鞭毛来调节鞭毛的运动负荷。多个鞭毛之间的集体负载共享导致每个鞭毛马达上的负载较低,因此鞭毛旋转更快,这补偿了较高的液体对较长的细菌体的阻力。如果没有这种平衡机制,单调细菌的游泳速度通常随着体长的增加而降低,限制细菌大小变化的特征。总之,我们的研究解决了长期以来关于鞭毛细菌大小-速度关系的争议,并提供了对细菌中多鞭毛的功能益处的见解.
    To swim through a viscous fluid, a flagellated bacterium must overcome the fluid drag on its body by rotating a flagellum or a bundle of multiple flagella. Because the drag increases with the size of bacteria, it is expected theoretically that the swimming speed of a bacterium inversely correlates with its body length. Nevertheless, despite extensive research, the fundamental size-speed relation of flagellated bacteria remains unclear with different experiments reporting conflicting results. Here, by critically reviewing the existing evidence and synergizing our own experiments of large sample sizes, hydrodynamic modeling, and simulations, we demonstrate that the average swimming speed of Escherichia coli, a premier model of peritrichous bacteria, is independent of their body length. Our quantitative analysis shows that such a counterintuitive relation is the consequence of the collective flagellar dynamics dictated by the linear correlation between the body length and the number of flagella of bacteria. Notably, our study reveals how bacteria utilize the increasing number of flagella to regulate the flagellar motor load. The collective load sharing among multiple flagella results in a lower load on each flagellar motor and therefore faster flagellar rotation, which compensates for the higher fluid drag on the longer bodies of bacteria. Without this balancing mechanism, the swimming speed of monotrichous bacteria generically decreases with increasing body length, a feature limiting the size variation of the bacteria. Altogether, our study resolves a long-standing controversy over the size-speed relation of flagellated bacteria and provides insights into the functional benefit of multiflagellarity in bacteria.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    TmaR,大肠杆菌中唯一已知的极点定位蛋白,显示在细胞两极聚集,并以酪氨酸磷酸化依赖性方式控制主要糖调节剂的定位和活性。这里,我们显示TmaR通过相分离(PS)通过体内和体外与RNA的异型相互作用进行组装。无偏的自动突变筛选结合定向诱变和遗传操作揭示了预测的核酸结合域的重要性。一个无序的区域,和带电的补丁,一个含有磷酸化的酪氨酸,用于TmaR冷凝。我们证明,通过保护鞭毛相关的转录本,TmaR控制鞭毛的产生,因此,细胞运动和生物膜形成。这些结果将细菌中的PS与存活联系起来,并为代谢和运动性之间的联系提供了解释。有趣的是,点突变或其细胞浓度的增加诱导TmaR的不可逆的液-固转变,类似于人类致病蛋白质,影响细胞形态和分裂。
    TmaR, the only known pole-localizer protein in Escherichia coli, was shown to cluster at the cell poles and control localization and activity of the major sugar regulator in a tyrosine phosphorylation-dependent manner. Here, we show that TmaR assembles by phase separation (PS) via heterotypic interactions with RNA in vivo and in vitro. An unbiased automated mutant screen combined with directed mutagenesis and genetic manipulations uncovered the importance of a predicted nucleic-acid-binding domain, a disordered region, and charged patches, one containing the phosphorylated tyrosine, for TmaR condensation. We demonstrate that, by protecting flagella-related transcripts, TmaR controls flagella production and, thus, cell motility and biofilm formation. These results connect PS in bacteria to survival and provide an explanation for the linkage between metabolism and motility. Intriguingly, a point mutation or increase in its cellular concentration induces irreversible liquid-to-solid transition of TmaR, similar to human disease-causing proteins, which affects cell morphology and division.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    dickeyafangzhongdai是一种毁灭性的细菌病原体,感染着全球各种农作物和观赏植物。作为2016年新发现的细菌物种,控制其毒力的调节机制仍然是一个谜。在这项研究中,我们探讨了多胺介导的细胞间通讯在D.fangzhongdai毒力调节中的潜在作用。D.fanghongdai菌株ZXC1中speA和speC的空突变,该菌株通过精氨酸和鸟氨酸途径编码多胺生物合成,分别,细菌运动性大大降低,植物细胞壁降解(PCWD)酶的产生减少,并减弱了对芋和马铃薯的细菌毒力。然后,我们测试了各种多胺分子在突变表型恢复中的作用,并表明腐胺是菌株ZXC1毒力性状调节中最有效的信号。此外,我们发现,芋提取物含有拯救腐胺缺乏表型的活性信号。高效液相色谱质谱分析验证了speA对于D.fangzhongdaiZXC1中腐胺的生产至关重要。我们进一步表明,腐胺转运蛋白PotF和PlaP是腐胺介导的细胞间通讯和对芋和马铃薯块茎的毒力所必需的。定量逆转录-PCR分析表明腐胺通过调节PCWD酶的表达影响D.fangzhongdaiZXC1的致病性,细菌趋化性,和鞭毛相关基因.这项研究的发现为阐明D.fangzhongdai的致病机制提供了新的思路,并为制定相关的疾病控制策略提供了有用的线索。IMPORTANCEDickeyafangzhongdai是一种新发现的植物细菌病原体,具有广泛的寄主范围。清楚了解调节细菌毒力的细胞间通讯系统对于阐明其致病机制和疾病控制至关重要。在这项研究中,我们提供的证据表明,来自病原体和寄主植物的腐胺分子在调节细菌毒力中起着至关重要的作用。这项研究的意义在于(i)证明腐胺信号系统主要通过调节细菌运动性和PCWD酶的产生来调节D.fanghongdai毒力,(ii)概述了腐胺信号系统调节上述毒力性状的信号和调节机制,(iii)验证D.fanghongdai可以同时使用精氨酸和鸟氨酸途径合成腐胺信号。据我们所知,这是首次报告显示腐胺信号系统在调节D.fanghongdai的致病性中起关键作用。
    OBJECTIVE: Dickeya fangzhongdai is a newly identified plant bacterial pathogen with a wide host range. A clear understanding of the cell-to-cell communication systems that modulate the bacterial virulence is of key importance for elucidating its pathogenic mechanisms and for disease control. In this study, we present evidence that putrescine molecules from the pathogen and host plants play an essential role in regulating the bacterial virulence. The significance of this study is in (i) demonstrating that putrescine signaling system regulates D. fangzhongdai virulence mainly through modulating the bacterial motility and production of PCWD enzymes, (ii) outlining the signaling and regulatory mechanisms with which putrescine signaling system modulates the above virulence traits, and (iii) validating that D. fangzhongdai could use both arginine and ornithine pathways to synthesize putrescine signals. To our knowledge, this is the first report to show that putrescine signaling system plays a key role in modulating the pathogenicity of D. fangzhongdai.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号