bacterial motility

细菌运动性
  • 文章类型: Journal Article
    生物膜中的细菌分泌钾离子以吸引自由游泳细胞。然而,对钾的趋化性的基础仍然知之甚少。这里,使用微流体装置,我们发现大肠杆菌可以在钾浓度高的地区以毫摩尔的数量级迅速积累。使用珠子测定,我们测量了单个鞭毛马达对钾浓度逐步变化的动态响应,发现反应是由趋化性信号通路引起的。为了表征对钾的趋化反应,我们通过Förster共振能量转移(FRET)测定测量了剂量反应曲线和适应动力学,发现趋化性途径表现出对钾的敏感反应和快速适应。我们进一步发现两种主要的化学感受器Tar和Tsr对钾的反应不同。焦油受体表现出双相反应,而Tsr受体响应钾作为引诱剂。这些不同的反应与两种受体对细胞内pH变化的反应一致。灵敏的反应和快速的适应使细菌能够感知和定位钾浓度的微小变化。Tar和Tsr受体对钾的差异反应表明,处于不同生长阶段的细胞对钾的反应不同,并且对钾的需求可能不同。
    Bacteria in biofilms secrete potassium ions to attract free swimming cells. However, the basis of chemotaxis to potassium remains poorly understood. Here, using a microfluidic device, we found that Escherichia coli can rapidly accumulate in regions of high potassium concentration on the order of millimoles. Using a bead assay, we measured the dynamic response of individual flagellar motors to stepwise changes in potassium concentration, finding that the response resulted from the chemotaxis signaling pathway. To characterize the chemotactic response to potassium, we measured the dose-response curve and adaptation kinetics via an Förster resonance energy transfer (FRET) assay, finding that the chemotaxis pathway exhibited a sensitive response and fast adaptation to potassium. We further found that the two major chemoreceptors Tar and Tsr respond differently to potassium. Tar receptors exhibit a biphasic response, whereas Tsr receptors respond to potassium as an attractant. These different responses were consistent with the responses of the two receptors to intracellular pH changes. The sensitive response and fast adaptation allow bacteria to sense and localize small changes in potassium concentration. The differential responses of Tar and Tsr receptors to potassium suggest that cells at different growth stages respond differently to potassium and may have different requirements for potassium.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在自然环境中浸没在液体中的固体表面改变细菌游动行为并充当细菌形成生物膜的平台。在生物膜形成的初始阶段,细菌检测表面并增加第二信使c-di-GMP的细胞内水平,导致游泳速度降低。这种速度降低对细菌表面游泳的影响尚不清楚。在这项研究中,我们利用先进的显微镜技术来检查游泳速度对细菌表面游泳行为的影响。我们发现游泳速度的降低会减少细胞表面距离并延长表面捕获时间。这两种效应都将增强细菌表面感知并增加细胞粘附到表面的可能性,从而促进生物膜的形成。我们还检查了野生型大肠杆菌和铜绿假单胞菌的表面逃逸行为,注意到两种细菌之间不同的表面逃逸机制。
    目的:在生物膜形成的早期阶段,细菌识别表面并增加第二信使c-di-GMP的细胞内水平,导致游泳速度下降。这里,我们利用先进的显微镜技术来研究游泳速度对细菌表面游泳的影响,专注于大肠杆菌和铜绿假单胞菌。我们发现游泳速度的增加导致曲率半径的增加和表面滞留时间的减少。这些影响是通过流体动力学模型解释的,这是由于细胞表面距离随着游泳速度的增加而增加的结果。我们还观察到两种细菌之间不同的表面逃逸机制。我们的研究表明,游泳速度的降低可能会增加细胞粘附到表面的可能性,促进生物膜的形成。这揭示了游泳速度降低在从能动的细菌生活方式转变为久坐的细菌生活方式中的作用。
    Solid surfaces submerged in liquid in natural environments alter bacterial swimming behavior and serve as platforms for bacteria to form biofilms. In the initial stage of biofilm formation, bacteria detect surfaces and increase the intracellular level of the second messenger c-di-GMP, leading to a reduction in swimming speed. The impact of this speed reduction on bacterial surface swimming remains unclear. In this study, we utilized advanced microscopy techniques to examine the effect of swimming speed on bacterial surface swimming behavior. We found that a decrease in swimming speed reduces the cell-surface distance and prolongs the surface trapping time. Both these effects would enhance bacterial surface sensing and increase the likelihood of cells adhering to the surface, thereby promoting biofilm formation. We also examined the surface-escaping behavior of wild-type Escherichia coli and Pseudomonas aeruginosa, noting distinct surface-escaping mechanisms between the two bacterial species.
    OBJECTIVE: In the early phase of biofilm formation, bacteria identify surfaces and increase the intracellular level of the second messenger c-di-GMP, resulting in a decrease in swimming speed. Here, we utilized advanced microscopy techniques to investigate the impact of swimming speed on bacterial surface swimming, focusing on Escherichia coli and Pseudomonas aeruginosa. We found that an increase in swimming speed led to an increase in the radius of curvature and a decrease in surface detention time. These effects were explained through hydrodynamic modeling as a result of an increase in the cell-surface distance with increasing swimming speed. We also observed distinct surface-escaping mechanisms between the two bacterial species. Our study suggests that a decrease in swimming speed could enhance the likelihood of cells adhering to the surface, promoting biofilm formation. This sheds light on the role of reduced swimming speed in the transition from motile to sedentary bacterial lifestyles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞外抗生素抗性基因(eARGs)在废水和天然水体中的环境传播引起了越来越多的生态学关注。已知水中共存的化学污染物会显著影响环境微生物群落的eARGs转移行为,但是到目前为止,详细的相互作用和具体影响仍然难以捉摸。这里,我们揭示了邻苯二甲酸二甲酯(DMP)和几种其他类型的邻苯二甲酸酯(从塑料中释放的常见水污染物)对eARGs自然转化的浓度依赖性影响。在与环境相关的浓度(10μg/L)下暴露DMP会使鲍氏不动杆菌的转化频率提高4.8倍,但在高浓度(1000μg/L)下严重抑制了转化。低浓度DMP的促进归因于多种机制,包括增加的细菌迁移率和膜通透性,以促进eARGs的摄取和改善的DMP结合的eARGs(通过非共价相互作用)对酶降解(抑制DNase活性)的抗性。在实际的废水和生物膜系统中也发现了DMP对eARGs转化的类似促进作用。相比之下,更高浓度的DMP通过破坏DNA结构来抑制eARGs转化。我们的发现强调了由于共存化学污染物的影响,在水生环境中传播的eARGs可能被低估,并加深了我们对废水和环境水体中生化联合污染风险的理解。
    The environmental dissemination of extracellular antibiotic resistance genes (eARGs) in wastewater and natural water bodies has aroused growing ecological concerns. The coexisting chemical pollutants in water are known to markedly affect the eARGs transfer behaviors of the environmental microbial community, but the detailed interactions and specific impacts remain elusive so far. Here, we revealed a concentration-dependent impact of dimethyl phthalate (DMP) and several other types of phthalate esters (common water pollutants released from plastics) on the natural transformation of eARGs. The DMP exposure at an environmentally relevant concentration (10 μg/L) resulted in a 4.8-times raised transformation frequency of Acinetobacter baylyi but severely suppressed the transformation at a high concentration (1000 μg/L). The promotion by low-concentration DMP was attributed to multiple mechanisms, including increased bacterial mobility and membrane permeability to facilitate eARGs uptake and improved resistance of the DMP-bounded eARGs (via noncovalent interaction) to enzymatic degradation (with suppressed DNase activity). Similar promoting effects of DMP on the eARGs transformation were also found in real wastewater and biofilm systems. In contrast, higher-concentration DMP suppressed the eARGs transformation by disrupting the DNA structure. Our findings highlight a potentially underestimated eARGs spreading in aquatic environments due to the impacts of coexisting chemical pollutants and deepen our understanding of the risks of biological-chemical combined pollution in wastewater and environmental water bodies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    dickeyafangzhongdai是一种毁灭性的细菌病原体,感染着全球各种农作物和观赏植物。作为2016年新发现的细菌物种,控制其毒力的调节机制仍然是一个谜。在这项研究中,我们探讨了多胺介导的细胞间通讯在D.fangzhongdai毒力调节中的潜在作用。D.fanghongdai菌株ZXC1中speA和speC的空突变,该菌株通过精氨酸和鸟氨酸途径编码多胺生物合成,分别,细菌运动性大大降低,植物细胞壁降解(PCWD)酶的产生减少,并减弱了对芋和马铃薯的细菌毒力。然后,我们测试了各种多胺分子在突变表型恢复中的作用,并表明腐胺是菌株ZXC1毒力性状调节中最有效的信号。此外,我们发现,芋提取物含有拯救腐胺缺乏表型的活性信号。高效液相色谱质谱分析验证了speA对于D.fangzhongdaiZXC1中腐胺的生产至关重要。我们进一步表明,腐胺转运蛋白PotF和PlaP是腐胺介导的细胞间通讯和对芋和马铃薯块茎的毒力所必需的。定量逆转录-PCR分析表明腐胺通过调节PCWD酶的表达影响D.fangzhongdaiZXC1的致病性,细菌趋化性,和鞭毛相关基因.这项研究的发现为阐明D.fangzhongdai的致病机制提供了新的思路,并为制定相关的疾病控制策略提供了有用的线索。IMPORTANCEDickeyafangzhongdai是一种新发现的植物细菌病原体,具有广泛的寄主范围。清楚了解调节细菌毒力的细胞间通讯系统对于阐明其致病机制和疾病控制至关重要。在这项研究中,我们提供的证据表明,来自病原体和寄主植物的腐胺分子在调节细菌毒力中起着至关重要的作用。这项研究的意义在于(i)证明腐胺信号系统主要通过调节细菌运动性和PCWD酶的产生来调节D.fanghongdai毒力,(ii)概述了腐胺信号系统调节上述毒力性状的信号和调节机制,(iii)验证D.fanghongdai可以同时使用精氨酸和鸟氨酸途径合成腐胺信号。据我们所知,这是首次报告显示腐胺信号系统在调节D.fanghongdai的致病性中起关键作用。
    OBJECTIVE: Dickeya fangzhongdai is a newly identified plant bacterial pathogen with a wide host range. A clear understanding of the cell-to-cell communication systems that modulate the bacterial virulence is of key importance for elucidating its pathogenic mechanisms and for disease control. In this study, we present evidence that putrescine molecules from the pathogen and host plants play an essential role in regulating the bacterial virulence. The significance of this study is in (i) demonstrating that putrescine signaling system regulates D. fangzhongdai virulence mainly through modulating the bacterial motility and production of PCWD enzymes, (ii) outlining the signaling and regulatory mechanisms with which putrescine signaling system modulates the above virulence traits, and (iii) validating that D. fangzhongdai could use both arginine and ornithine pathways to synthesize putrescine signals. To our knowledge, this is the first report to show that putrescine signaling system plays a key role in modulating the pathogenicity of D. fangzhongdai.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞运动性对于根际的有效定植至关重要,但目前尚不清楚细菌运动性是否与其他遗传性状特别相关。这里,我们应用基因组解析宏基因组学和系统基因组学研究了细胞运动性对生态位分化的生态学意义,以及在四个十年的玉米田间试验中,能动细菌的遗传组成与根际定植之间的联系。的确,编码细胞运动性的基因高度多样化,包括趋化性,鞭毛组装和运动蛋白,和聚合碳的利用是大块土壤和根际土壤之间细菌生态位分化的重要预测因素。这通过编码高运动能力的宏基因组组装的基因组(hmc_MAGs)很好地例证。他们的集体财富是,平均而言,根际土壤比块状土壤高六倍。所有源自大块土壤的MAG均显示出较低的运动能力(lmc)。hmc_MAG高度富集了参与碳水化合物利用的有益性状,同化(NASA)和异化(NirBD)硝酸盐还原,无机磷酸盐增溶(gcd),和有机磷酸盐矿化(phoD)。属于Sphingomonadaceae科,伯克霍氏杆菌科和类固醇杆菌科,hmc_MAG在这些特征中显示出比蛋白细菌lmc_MAG高九倍的富集,并且比上述三个家族公开提供的264个基因组高两倍的富集,从而证实了特定的根际效应作用于由hmc_MAG代表的微生物。通过对从小麦和黄瓜田间回收的公共根际土壤宏基因组的分析,进一步证实了高细胞运动性的遗传能力与碳水化合物解聚增加之间的特殊联系,这是植物选择的根际定植的关键决定因素。
    Cellular motility is crucial for effective colonization of the rhizosphere, but it is not yet clear whether bacterial motility is particularly linked to other genetic traits. Here, we applied genome-resolved metagenomics and phylogenomics to investigate the ecological significance of cellular motility for niche differentiation and the links between the genetic makeup of motile bacteria and rhizosphere colonization within a four-decade maize field experiment. Indeed, highly diverse sets of genes encoding cellular motility, including chemotaxis, flagellar assembly and motility proteins, and utilization of polymeric carbon were the important predictors of bacterial niche differentiation between bulk and rhizosphere soils. This is well exemplified by metagenome-assembled genomes encoding high motility capacity (hmc_MAGs). Their collective abundance was, on average, sixfold higher in rhizosphere soil than in bulk soil. All bulk-soil-derived MAGs showed low motility capacities (lmc). The hmc_MAGs were highly enriched in beneficial traits involved in carbohydrate utilization, assimilatory (nasA) and dissimilatory (nirBD) nitrate reduction, inorganic phosphate solubilization (gcd), and organic phosphate mineralization (phoD). Belonging to the families Sphingomonadaceae, Burkholderiaceae and Steroidobacteraceae, the hmc_MAGs showed a ninefold greater enrichment in these traits than proteobacterial lmc_MAGs and a twofold greater enrichment than 264 genomes publicly available for the above three families, thereby substantiating that a specific rhizosphere effect acted on the microbes represented by the hmc_MAGs. The particular link between the genetic capacities for high cellular motility and increased carbohydrate depolymerization as the key determinant for plant-selected rhizosphere colonization was further substantiated by the analysis of public bulk-rhizosphere soil metagenomes retrieved from wheat and cucumber field sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌趋化信号通路的输出,细胞内调节因子CheY-P的水平,调节鞭毛马达的旋转方向,从而调节细菌的运行和翻滚行为。大肠杆菌细胞上的多个鞭毛马达由CheY-P的常见细胞质池控制。CheY-P水平的波动被认为能够协调多个电机的切换。这里,我们测量了细胞上两个电机之间旋转方向的相关性,发现它令人惊讶地表现出两个分离良好的时间尺度。Wefoundthattheslowtimescale(jo6s)canbeexplainedbytheslowvolvingoftheCheY-PlevelduetorandomentactivityofthecheY-P,而快速时间尺度(~0.3s)可以用CheY-P电平的随机脉冲状波动来解释,可能是由于化学感受器簇的活性。我们根据相关测量结果提取了有关快速CheY-P脉冲特性的信息。CheY-P水平波动中的两个分离良好的时间尺度有助于协调细胞上的多个马达并增强细菌趋化性能。 .
    The output of the bacterial chemotaxis signaling pathway, the level of the intracellular regulator CheY-P, modulates the rotation direction of the flagellar motor, thereby regulating bacterial run-and-tumble behavior. The multiple flagellar motors on anE. colicell are controlled by a common cytoplasmic pool of CheY-P. Fluctuation of the CheY-P level was thought to be able to coordinate the switching of multiple motors. Here, we measured the correlation of rotation directions between two motors on a cell, finding that it surprisingly exhibits two well separated timescales. We found that the slow timescale (∼6 s) can be explained by the slow fluctuation of the CheY-P level due to stochastic activity of the chemotactic adaptation enzymes, whereas the fast timescale (∼0.3 s) can be explained by the random pulse-like fluctuation of the CheY-P level, due probably to the activity of the chemoreceptor clusters. We extracted information on the properties of the fast CheY-P pulses based on the correlation measurements. The two well-separated timescales in the fluctuation of CheY-P level help to coordinate multiple motors on a cell and to enhance bacterial chemotactic performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细菌鞭毛马达的细胞质环(C环)控制马达旋转方向,从而控制细菌的运行和翻滚行为。已显示C环响应于运动方向偏差的变化而经历自适应重塑。然而,由于荧光研究和低温电子显微镜(cryo-EM)结构分析的结果之间存在矛盾,因此C环的化学计量和排列仍不清楚。这里,通过使用C环中FliG分子的拷贝数(34)作为参考,我们精确测量了仅逆时针(CCW)和顺时针(CW)旋转的电机中FliM分子的拷贝数。我们惊讶地发现,在CW和CCW旋转电机中平均有45和58个FliM分子,分别,远远高于以前的估计。我们的结果提出了一种新的C环适应机制,也就是说,额外的FliM分子可能与初级C环结合,可能性取决于电机旋转方向。我们进一步证实,C环中的所有FliM分子在趋化性信号转导中起作用,因为它们都可以被趋化反应调节因子CheY-P结合。我们的测量为鞭毛开关的结构和布置提供了新的见解。重要性细菌鞭毛开关可根据运动旋转方向的变化进行适应性重塑,从而改变其操作点以匹配趋化信号通路的输出。然而,目前尚不清楚鞭毛开关是如何实现这种适应性重塑的.这里,通过精确的荧光研究,我们测量了逆时针和顺时针旋转电机开关中关键部件的绝对拷贝数,获得比以前的相对估计大得多的数字。我们的结果表明了鞭毛开关适应性重塑的新机制,并为更新开关的构象传播模型提供了新的见解。
    The cytoplasmic ring (C-ring) of the bacterial flagellar motor controls the motor rotation direction, thereby controlling bacterial run-and-tumble behavior. The C-ring has been shown to undergo adaptive remodeling in response to changes in motor directional bias. However, the stoichiometry and arrangement of the C-ring is still unclear due to contradiction between the results from fluorescence studies and cryo-electron microscopy (cryo-EM) structural analysis. Here, by using the copy number of FliG molecules (34) in the C-ring as a reference, we precisely measured the copy numbers of FliM molecules in motors rotating exclusively counterclockwise (CCW) and clockwise (CW). We surprisingly found that there are on average 45 and 58 FliM molecules in CW and CCW rotating motors, respectively, which are much higher than previous estimates. Our results suggested a new mechanism of C-ring adaptation, that is, extra FliM molecules could be bound to the primary C-ring with probability depending on the motor rotational direction. We further confirmed that all of the FliM molecules in the C-ring function in chemotaxis signaling transduction because all of them could be bound by the chemotactic response regulator CheY-P. Our measurements provided new insights into the structure and arrangement of the flagellar switch. IMPORTANCE The bacterial flagellar switch can undergo adaptive remodeling in response to changes in motor rotation direction, thereby shifting its operating point to match the output of the chemotaxis signaling pathway. However, it remains unclear how the flagellar switch accomplishes this adaptive remodeling. Here, via precise fluorescence studies, we measured the absolute copy numbers of the critical component in the switch for motors rotating counterclockwise and clockwise, obtaining much larger numbers than previous relative estimates. Our results suggested a new mechanism of adaptive remodeling of the flagellar switch and provided new insights for updating the conformation spread model of the switch.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    QseB/QseC是一个双组分系统,通过调节群体感应参与多种细菌行为的调节,细菌致病性,抗生素耐药性。因此,QseB/QseC可以为新的抗生素开发提供靶标。最近,已发现QseB/QseC在胁迫条件下赋予环境细菌生存优势。对QseB/QseC的分子机制理解已成为一个活跃的研究领域,并揭示了一些新兴的主题,包括对不同病原体和环境细菌中QseB/QseC调节的更深入了解,物种之间QseB/QseC的功能差异,以及分析QseB/QseC演变的可能性。这里,我们讨论了QseB/QseC研究的进展,并描述了几个尚未解决的问题和未来的方向。解决这些问题是未来QseB/QseC研究的挑战之一。
    QseB/QseC is a two-component system that is involved in the regulation of multiple bacterial behaviors by regulating quorum sensing, bacterial pathogenicity, and antibiotic resistance. Thus, QseB/QseC could provide a target for new antibiotic development. Recently, QseB/QseC has been found to confer survival advantages to environmental bacteria under stress conditions. The molecular mechanistic understanding of QseB/QseC has become an active area of research and revealed some emerging themes, including a deeper understanding of QseB/QseC regulation in different pathogens and environmental bacteria, the functional difference of QseB/QseC among species, and the possibility of analyzing QseB/QseC evolution. Here, we discuss the progression of QseB/QseC studies and describe several unresolved issues and future directions. Resolving these issues is among the challenges of future QseB/QseC studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    广泛的抗生素抗性基因(ARGs)已成为公共卫生关注的焦点。转化对于ARGs在土壤和相关环境中的传播至关重要;然而,土壤成分如何促进ARGs转化的机制仍然难以捉摸。在这里,我们证明了三种代表性的矿物-腐殖酸(HA)复合材料对枯草芽孢杆菌中质粒携带的ARG的转化产生了相反的影响。矿物表面结合的HA促进了高岭石和蒙脱石系统中的转化,同时观察到HA对针铁矿的抑制作用。HA涂层高岭石的转化升高主要归因于能力刺激因子(CSF)的活性增强,蒙脱石-HA复合材料的转化增加归因于鞭毛驱动的细胞运动诱导的DNA吸附亲和力减弱和基因表达增强。在针铁矿系统中,HA通过减轻细胞膜损伤在抑制转化中起着至关重要的作用。获得的结果提供了对腐殖质调节土壤矿物质细菌转化的不同机制的见解。我们的发现将有助于更好地了解土壤系统中ARGs的命运,并为土壤成分的利用提供潜力。特别是有机物,以减轻ARG在一系列设置中的传播。
    Widespread antibiotic resistance genes (ARGs) have emerged as a focus of attention for public health. Transformation is essential for ARGs dissemination in soils and associated environments; however, the mechanisms of how soil components contribute to the transformation of ARGs remain elusive. Here we demonstrate that three representative mineral-humic acid (HA) composites exert contrasting influence on the transformation of plasmid-borne ARGs in Bacillus subtilis. Mineral surface-bound HA facilitated transformation in kaolinite and montmorillonite systems, while an inhibitory effect of HA was observed for goethite. The elevated transformation by HA-coated kaolinite was mainly attributed to the enhanced activity of competence-stimulating factor (CSF), while increased transformation by montmorillonite-HA composites was assigned to the weakened adsorption affinity of DNA and enhanced gene expression induced by flagella-driven cell motility. In goethite system, HA played an overriding role in suppressing transformation via alleviation of cell membrane damage. The results obtained offer insights into the divergent mechanisms of humic substances in modulating bacterial transformation by soil minerals. Our findings would help for a better understanding on the fate of ARGs in soil systems and provide potentials for the utilization of soil components, particularly organic matter, to mitigate the spread of ARGs in a range of settings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在许多表面上存在的细菌多样性的数量是巨大的;然而,面对细菌群落跨空间扩展(此处称为范围扩展)所发生的净化过程,这些多样性水平如何持续存在仍然是一个谜。我们通过提供机制证据证明真菌菌丝介导的分散在范围扩大期间调节细菌多样性方面的重要作用,从而阐明了这一明显的悖论。使用成对的荧光标记的细菌菌株和形成菌丝的真菌菌株,它们在营养改良的表面上一起扩展,我们表明,菌丝网络增加了细菌菌株的空间混合和范围扩展的程度。无论细菌菌株之间施加的相互作用类型(竞争或资源交叉饲养)如何,都是如此。我们进一步表明,根本原因是鞭毛运动驱动细菌沿着菌丝网络扩散,抵消了扩张前沿生态漂移的净化效应。我们最终证明了菌丝介导的空间混合增加了质粒编码的抗生素抗性的接合介导的传播。总之,真菌菌丝是细菌多样性的重要调节因子,在范围扩展过程中以不依赖相互作用的方式促进质粒介导的功能新颖性.
    The amount of bacterial diversity present on many surfaces is enormous; however, how these levels of diversity persist in the face of the purifying processes that occur as bacterial communities expand across space (referred to here as range expansion) remains enigmatic. We shed light on this apparent paradox by providing mechanistic evidence for a strong role of fungal hyphae-mediated dispersal on regulating bacterial diversity during range expansion. Using pairs of fluorescently labeled bacterial strains and a hyphae-forming fungal strain that expand together across a nutrient-amended surface, we show that a hyphal network increases the spatial intermixing and extent of range expansion of the bacterial strains. This is true regardless of the type of interaction (competition or resource cross-feeding) imposed between the bacterial strains. We further show that the underlying cause is that flagellar motility drives bacterial dispersal along the hyphal network, which counteracts the purifying effects of ecological drift at the expansion frontier. We finally demonstrate that hyphae-mediated spatial intermixing increases the conjugation-mediated spread of plasmid-encoded antibiotic resistance. In conclusion, fungal hyphae are important regulators of bacterial diversity and promote plasmid-mediated functional novelty during range expansion in an interaction-independent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号