axons

轴突
  • 文章类型: Journal Article
    人类新皮层电路和结构的破坏会导致许多神经发育障碍。新皮质细胞结构由各种转录因子如Satb2协调,这些转录因子在严格的时间窗口内控制靶基因。在人类中,SATB2突变导致SATB2相关综合征(SAS),涉及癫痫的多症状综合征,智力残疾,说话延迟,和颅面缺陷。在这里,我们表明Satb2通过诱导GPI锚定蛋白的表达来控制鼠新皮质发育过程中的神经元迁移和call骨轴突生长,信号7A(Sema7A)。我们发现Sema7A通过与跨膜信号蛋白的顺式异源二聚化来发挥这种生物活性,Sema4D.我们还可以观察到与Sema7A的异源二聚化在体外促进Sema4D靶向质膜。最后,我们报道了Sema4D(Q497P)中与癫痫相关的从头突变,该突变抑制了Sema4D相关复合物的正常糖基化和质膜定位.这些结果表明,在新皮质发育过程中,信号素的神经元使用是异聚性的,并且存在比以前认为的更大的信令复杂性。
    Disruption of neocortical circuitry and architecture in humans causes numerous neurodevelopmental disorders. Neocortical cytoarchitecture is orchestrated by various transcription factors such as Satb2 that control target genes during strict time windows. In humans, mutations of SATB2 cause SATB2 Associated Syndrome (SAS), a multisymptomatic syndrome involving epilepsy, intellectual disability, speech delay, and craniofacial defects. Here we show that Satb2 controls neuronal migration and callosal axonal outgrowth during murine neocortical development by inducing the expression of the GPI-anchored protein, Semaphorin 7A (Sema7A). We find that Sema7A exerts this biological activity by heterodimerizing in cis with the transmembrane semaphorin, Sema4D. We could also observe that heterodimerization with Sema7A promotes targeting of Sema4D to the plasma membrane in vitro. Finally, we report an epilepsy-associated de novo mutation in Sema4D (Q497P) that inhibits normal glycosylation and plasma membrane localization of Sema4D-associated complexes. These results suggest that neuronal use of semaphorins during neocortical development is heteromeric, and a greater signaling complexity exists than was previously thought.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自发活动在感觉体验开始之前改善神经连通性,但目前尚不清楚这种活动如何以亚细胞精度指示轴突连接.我们同时测量了自发的视网膜波和单个视网膜滤泡轴突的活动,并在新生小鼠体内数小时内跟踪了轴突乔木的形态变化。我们证明轴突分支的活动与相邻的轴突或突触后神经元的相关性预测分支是否会被添加,稳定,或消除。从本地网络中去同步各个轴突,改变相关活动的模式,或阻断N-甲基-d-天冬氨酸受体均显着改变单轴突形态。这些观察结果在体内提供了第一个直接证据,即相关神经元活动的内源性模式指示轴突过程的精细细化。
    Spontaneous activity refines neural connectivity prior to the onset of sensory experience, but it remains unclear how such activity instructs axonal connectivity with subcellular precision. We simultaneously measured spontaneous retinal waves and the activity of individual retinocollicular axons and tracked morphological changes in axonal arbors across hours in vivo in neonatal mice. We demonstrate that the correlation of an axon branch\'s activity with neighboring axons or postsynaptic neurons predicts whether the branch will be added, stabilized, or eliminated. Desynchronizing individual axons from their local networks, changing the pattern of correlated activity, or blocking N-methyl-d-aspartate receptors all significantly altered single-axon morphology. These observations provide the first direct evidence in vivo that endogenous patterns of correlated neuronal activity instruct fine-scale refinement of axonal processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    中枢和周围神经系统(CNS和PNS,分别)在神经元损伤后的再生能力方面表现出明显的多样性,PNS损伤比中枢神经系统中发生的损伤更有可能再生。对损伤的神经胶质反应通过随时间促进或抑制轴突再生而极大地影响再生的可能性。然而,尽管我们了解一些神经胶质谱系如何参与神经变性和再生,关于外周卫星胶质细胞(SGC)对背根神经节(DRG)感觉神经元中央轴突分支损伤后再生失败的贡献知之甚少。这里,在体内使用,幼体斑马鱼的延时成像与激光轴突切开术,我们研究了SGC在轴突再生中的作用。在我们的研究中,我们表明,在DRG神经元产生新的中央分支神经突的同一时期,SGC通过将其核重新定位到损伤部位来对损伤做出反应。在轴突损伤之前激光消融SGC会导致更多的神经突生长尝试,并最终导致更高的中央轴突再生成功率。暗示SGCs是再生的抑制剂。我们还证明了这种SGC反应部分是由ErbB信号介导的,因为该受体的化学抑制导致SGC运动性降低和中央轴突再生长增强。这些发现为在损伤条件下SGC-神经元相互作用以及这些相互作用如何影响神经系统修复提供了新的见解。
    The central and peripheral nervous systems (CNS and PNS, respectively) exhibit remarkable diversity in the capacity to regenerate following neuronal injury with PNS injuries being much more likely to regenerate than those that occur in the CNS. Glial responses to damage greatly influence the likelihood of regeneration by either promoting or inhibiting axonal regrowth over time. However, despite our understanding of how some glial lineages participate in nerve degeneration and regeneration, less is known about the contributions of peripheral satellite glial cells (SGC) to regeneration failure following central axon branch injury of dorsal root ganglia (DRG) sensory neurons. Here, using in vivo, time-lapse imaging in larval zebrafish coupled with laser axotomy, we investigate the role of SGCs in axonal regeneration. In our studies we show that SGCs respond to injury by relocating their nuclei to the injury site during the same period that DRG neurons produce new central branch neurites. Laser ablation of SGCs prior to axon injury results in more neurite growth attempts and ultimately a higher rate of successful central axon regrowth, implicating SGCs as inhibitors of regeneration. We also demonstrate that this SGC response is mediated in part by ErbB signaling, as chemical inhibition of this receptor results in reduced SGC motility and enhanced central axon regrowth. These findings provide new insights into SGC-neuron interactions under injury conditions and how these interactions influence nervous system repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    轴突损伤是创伤性损伤和神经退行性疾病的共同特征。损伤后轴突再生和恢复功能的能力是一种在周围神经系统中很容易看到的现象。尤其是在啮齿动物模型中,但人类轴突再生是有限的,并不能导致功能的完全恢复。在这里,我们描述了一个系统,其中可以通过在微流体系统中培养的人诱导多能干细胞(hiPSC)衍生的神经元的实时成像来评估人轴突生长和再生的动力学。细胞体从轴突中分离出来。该系统可以帮助研究轴突生长动力学,并且可以用于测试促进神经系统再生和修复的潜在药物。
    Axonal damage is a common feature of traumatic injury and neurodegenerative disease. The capacity for axons to regenerate and to recover functionality after injury is a phenomenon that is seen readily in the peripheral nervous system, especially in rodent models, but human axonal regeneration is limited and does not lead to full functional recovery. Here we describe a system where dynamics of human axonal outgrowth and regeneration can be evaluated via live imaging of human-induced pluripotent stem cell (hiPSC)-derived neurons cultured in microfluidic systems, in which cell bodies are isolated from their axons. This system could aid in studying axonal outgrowth dynamics and could be useful for testing potential drugs that encourage regeneration and repair of the nervous system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    化疗诱导的周围神经病变(CIPN)模型中的神经再生分析可以使用分隔培养系统来实现。该系统使我们能够物理和流体地将细胞体与轴突隔离,因此允许独立操纵细胞体和轴突。分隔室模仿人体状况,可以用来研究轴突变性,疾病建模,和药物筛选。将此培养系统应用于CIPN模型,以研究和分析在有和没有氟轻松奈德(FA)的情况下对紫杉醇(PTX)的反应的轴突行为,并更好地了解PTX的位点特异性靶标。因此,这种分隔系统允许化疗药物对细胞体或轴突侧的独立治疗,这使得能够监测它们作为治疗结果的反应。
    The analysis of nerve regeneration in the chemotherapy-induced peripheral neuropathy (CIPN) model can be achieved using the compartmentalized culture system. This system enables us to isolate the cell body from the axon physically and fluidically, therefore allowing for the independent manipulation of the cell body and axons. Compartmentalized chambers mimic the human body conditions, and can be used to study axonal degeneration, disease modeling, and drug screening. This culture system is applied to the CIPN model to study and analyze axonal behavior in response to paclitaxel (PTX) with and without fluocinolone acetonide (FA) and to better understand the site-specific target of PTX. Therefore, this compartmentalized system allows for the independent treatment of chemotherapy drugs to the cell body or axonal side which enables monitoring their reaction as a result of the treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的十年中,轴突生长和寻路过程中微管排列和动力学的研究获得了科学兴趣。并且已经实现了用于其可视化和分析的大量技术资源。在这一章中,我们描述了胚胎皮质和视网膜神经元的细胞培养方案,用微管聚合的荧光报告基因转染它们的方法,以及延时成像和定量程序,以研究轴突形态发生过程中的微管动力学。
    The study of microtubules arrangements and dynamics during axon outgrowth and pathfinding has gained scientific interest during the last decade, and numerous technical resources for its visualization and analysis have been implemented. In this chapter, we describe the cell culture protocols of embryonic cortical and retinal neurons, the methods for transfecting them with fluorescent reporters of microtubule polymerization, and the procedures for time-lapse imaging and quantification in order to study microtubule dynamics during axon morphogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元的特殊功能和极端几何形状需要对基于长距离微管的运输的独特依赖。通过运动蛋白适当地运输轴突货物对于在整个生命周期的发育和持续功能期间建立电路至关重要。可视化和量化货物运动提供了有关轴突细胞器如何补充的宝贵见解,回收,在传出和传入轴突交通的动态舞蹈中退化。长距离轴突运输特别重要,因为它涵盖了在发育和退行性疾病状态中通常被破坏的途径。这里,我们描述了神经元细胞器,并概述了通过荧光标记的细胞器标记的瞬时表达来实时成像和定量它们在轴突中的运动的方法。该资源为靶蛋白/结构域和适当的采集时间尺度提供了建议,用于在源自人诱导多能干细胞(iPSC)和原代大鼠神经元的培养神经元中可视化不同的神经元货物。
    The specialized function and extreme geometry of neurons necessitates a unique reliance upon long-distance microtubule-based transport. Appropriate trafficking of axonal cargos by motor proteins is essential for establishing circuitry during development and continuing function throughout a lifespan. Visualizing and quantifying cargo movement provides valuable insight into how axonal organelles are replenished, recycled, and degraded during the dynamic dance of outgoing and incoming axonal traffic. Long-distance axonal trafficking is of particular importance as it encompasses a pathway commonly disrupted in developmental and degenerative disease states. Here, we describe neuronal organelles and outline methods for live imaging and quantifying their movement throughout the axon via transient expression of fluorescently labeled organelle markers. This resource provides recommendations for target proteins/domains and appropriate acquisition time scales for visualizing distinct neuronal cargos in cultured neurons derived from human induced pluripotent stem cells (iPSCs) and primary rat neurons.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元发育的特征是信号通过突触从轴突单向流向树突。神经元极化是发育过程中的关键步骤,它允许将不同的神经元过程指定为结构和功能上的单个轴突和多个树突,允许信息的单向流动。除了外在和内在信号,参与正反馈和负反馈回路的整个分子复合物网络在神经元过程的这种关键区分中起着重要作用。因此,在极性建立过程中,神经元形态发生了巨大变化。在这一章中,我们讨论了如何分析体外培养神经元的形态变化,以评估神经元的发育和极性状态。我们还讨论了这些研究如何在体内进行,其中极性研究提出了更大的挑战,有希望的结果解决多种病理条件。我们的实验模型仅限于培养物中的啮齿动物海马/皮质神经元和脑组织中的皮质神经元,它们是用于理解神经元极化的特征良好的模型系统。
    Neuronal development is characterized by the unidirectional flow of signal from the axon to the dendrites via synapses. Neuronal polarization is a critical step during development that allows the specification of the different neuronal processes as a single axon and multiple dendrites both structurally and functionally, allowing the unidirectional flow of information. Along with extrinsic and intrinsic signaling, a whole network of molecular complexes involved in positive and negative feedback loops play a major role in this critical distinction of neuronal processes. As a result, neuronal morphology is drastically altered during establishment of polarity. In this chapter, we discuss how we can analyze the morphological alterations of neurons in vitro in culture to assess the development and polarity status of the neuron. We also discuss how these studies can be conducted in vivo, where polarity studies pose a greater challenge with promising results for addressing multiple pathological conditions. Our experimental model is limited to rodent hippocampal/cortical neurons in culture and cortical neurons in brain tissues, which are well-characterized model systems for understanding neuronal polarization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在发育中的神经系统中,在神经回路达到最终的神经支配拓扑结构之前,轴突关节通常会经历复杂的重排。在斑马鱼的侧线感觉系统中,发育中的感觉轴突会重组其末端乔化模式,以在机械感觉毛细胞周围建立精确的神经微电路。然而,对感觉轴形态的变化和微电路组件背后的调节器的定量理解仍然是神秘的。这里,我们报道,Sema7A(Sema7A)是这些过程的重要中介。利用半自动三维神经突追踪方法和计算技术,我们在野生型和Sema7A功能丧失突变体中鉴定并定量分析了形成网络的独特拓扑特征.与野生型动物相比,Sema7A突变体中的感觉轴突显示出异常的树枝状,网络拓扑结构混乱,与毛细胞的接触减少。此外,非毛细胞对Sema7A分泌形式的异位表达诱导感觉轴突的趋化性引导。我们的发现表明,Sema7A可能既可以作为一种近碱,又可以作为一种分泌的线索,以在感觉器官发育过程中对神经回路进行图案化。
    In a developing nervous system, axonal arbors often undergo complex rearrangements before neural circuits attain their final innervation topology. In the lateral line sensory system of the zebrafish, developing sensory axons reorganize their terminal arborization patterns to establish precise neural microcircuits around the mechanosensory hair cells. However, a quantitative understanding of the changes in the sensory arbor morphology and the regulators behind the microcircuit assembly remain enigmatic. Here, we report that Semaphorin7A (Sema7A) acts as an important mediator of these processes. Utilizing a semi-automated three-dimensional neurite tracing methodology and computational techniques, we have identified and quantitatively analyzed distinct topological features that shape the network in wild-type and Sema7A loss-of-function mutants. In contrast to those of wild-type animals, the sensory axons in Sema7A mutants display aberrant arborizations with disorganized network topology and diminished contacts to hair cells. Moreover, ectopic expression of a secreted form of Sema7A by non-hair cells induces chemotropic guidance of sensory axons. Our findings propose that Sema7A likely functions both as a juxtracrine and as a secreted cue to pattern neural circuitry during sensory organ development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经元极性的建立,涉及轴突规格和外观,对于实现神经元的正确形态至关重要,这对神经元连接和认知功能很重要。细胞外因素,比如Wnts,调节神经元形态的不同方面。特别是,根据具体情况,非规范的Wnt5a对神经突生长表现出不同的影响。因此,Wnt5a在轴突生长和神经元极化中的作用尚不完全清楚.在这项研究中,我们证明了WNT5a,但不是WNT3a,促进分离的小鼠胚胎皮质神经元的轴突生长,并与核心PCP成分协调,刺梨和Vangl.出乎意料的是,外源性Wnt5a诱导的轴突生长依赖于内源性,神经元Wnts,因为使用IWP2和siRNA介导的Porcupine或Wnless抑制Wnt5a诱导的伸长的敲低对Porcupine的化学抑制作用。重要的是,IWP2延迟治疗不能阻断Wnt5a诱导的伸长,这表明内源性Wnts和Wnt5a在神经元极化的特定时间范围内起作用。成纤维细胞条件培养基中的Wnt5a可以与小的细胞外囊泡(sEV)相关联,我们还表明,这些含Wnt5a的sEV主要负责诱导轴突伸长。
    The establishment of neuronal polarity, involving axon specification and outgrowth, is critical to achieve the proper morphology of neurons, which is important for neuronal connectivity and cognitive functions. Extracellular factors, such as Wnts, modulate diverse aspects of neuronal morphology. In particular, non-canonical Wnt5a exhibits differential effects on neurite outgrowth depending upon the context. Thus, the role of Wnt5a in axon outgrowth and neuronal polarization is not completely understood. In this study, we demonstrate that Wnt5a, but not Wnt3a, promotes axon outgrowth in dissociated mouse embryonic cortical neurons and does so in coordination with the core PCP components, Prickle and Vangl. Unexpectedly, exogenous Wnt5a-induced axon outgrowth was dependent on endogenous, neuronal Wnts, as the chemical inhibition of Porcupine using the IWP2- and siRNA-mediated knockdown of either Porcupine or Wntless inhibited Wnt5a-induced elongation. Importantly, delayed treatment with IWP2 did not block Wnt5a-induced elongation, suggesting that endogenous Wnts and Wnt5a act during specific timeframes of neuronal polarization. Wnt5a in fibroblast-conditioned media can associate with small extracellular vesicles (sEVs), and we also show that these Wnt5a-containing sEVs are primarily responsible for inducing axon elongation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号