artificial synaptic transistor

  • 文章类型: Journal Article
    近年来,晶体管的突触特性已被广泛研究。与基于液体或有机材料的晶体管相比,无机固体电解质栅极晶体管具有化学稳定性好的优点。这项研究使用了一个简单的,AlLiO固体电解质制备In2O3晶体管的低成本溶液技术。该器件的电化学性能是通过形成双电层和电化学掺杂来实现的,可以模仿生物突触的基本功能,如兴奋性突触后电流(EPSC),成对脉冲促进(PPF),和尖峰时间依赖性可塑性(STDP)。此外,成功模拟了复杂的突触行为,例如巴甫洛夫经典条件和摩尔斯电码“青岛”。识别准确率达95%,建立了基于晶体管的人工神经网络来识别手语并实现手语解释。此外,手写数字的识别准确率为94%。即使有各种级别的高斯噪声,识别率仍在84%以上。上述发现证明了In2O3/AlLiOTFT在塑造下一代人工智能方面的潜力。 .
    In recent years, the synaptic properties of transistors have been extensively studied. Compared with liquid or organic material-based transistors, inorganic solid electrolyte-gated transistors have the advantage of better chemical stability. This study uses a simple, low-cost solution technology to prepare In2O3transistors gated by AlLiO solid electrolyte. The electrochemical performance of the device is achieved by forming a double electric layer and electrochemical doping, which can mimic basic functions of biological synapses, such as excitatory postsynaptic current, paired-pulse promotion, and spiking time-dependent plasticity. Furthermore, complex synaptic behaviors such as Pavlovian classical conditioning is successfully emulated. With a 95% identification accuracy, an artificial neural network based on transistors is built to recognize sign language and enable sign language interpretation. Additionally, the handwriting digit\'s identification accuracy is 94%. Even with various levels of Gaussian noise, the recognition rate is still above 84%. The above findings demonstrate the potential of In2O3/AlLiO TFT in shaping the next generation of artificial intelligence.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们提出了一种有效响应二元神经可塑性的双极壳聚糖突触晶体管。我们通过将壳聚糖双电层(EDL)应用于具有Ni硅化物(NiSi)肖特基势垒源极/漏极(S/D)结的准分子激光退火多晶硅(poly-Si)薄膜晶体管(TFT)的栅极绝缘体来制造突触晶体管。未掺杂的多晶硅沟道和NiSiS/D接触允许电子和空穴传导,导致p型和n型区域的人工突触行为。壳聚糖EDL中的阴离子(CH3COO-和OH-)和阳离子(H)等可移动离子在双极TFT的转移特性中引起的缓慢极化反应。我们通过重复的增强和抑制脉冲证明了兴奋性突触后电流调制和稳定的电导调制。我们期望所提出的双极壳聚糖突触晶体管能够有效地响应正刺激信号和负刺激信号,从而为生物启发的神经形态计算系统提供更复杂的信息过程多功能性。
    We propose an ambipolar chitosan synaptic transistor that effectively responds to binary neuroplasticity. We fabricated the synaptic transistors by applying a chitosan electric double layer (EDL) to the gate insulator of the excimer laser annealed polycrystalline silicon (poly-Si) thin-film transistor (TFT) with Ni-silicide (NiSi) Schottky-barrier source/drain (S/D) junction. The undoped poly-Si channel and the NiSi S/D contact allowed conduction by electrons and holes, resulting in artificial synaptic behavior in both p-type and n-type regions. A slow polarization reaction by the mobile ions such as anions (CH3COO- and OH-) and cations (H+) in the chitosan EDL induced hysteresis window in the transfer characteristics of the ambipolar TFTs. We demonstrated the excitatory post-synaptic current modulations and stable conductance modulation through repetitive potentiation and depression pulse. We expect the proposed ambipolar chitosan synaptic transistor that responds effectively to both positive and negative stimulation signals to provide more complex information process versatility for bio-inspired neuromorphic computing systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号