arginine methylation

精氨酸甲基化
  • 文章类型: Journal Article
    乳腺癌是全球女性中最常见的癌症。早期乳腺癌在约70-80%的患者中可以治愈,而晚期转移性乳腺癌被认为是目前疗法无法治愈的。乳腺癌是一种高度异质性的疾病,可根据关键标记分为三种主要亚型,为每种亚型制定特定的治疗策略。乳腺癌发生的复杂性通常与调节不同信号通路的表观遗传修饰有关。参与乳腺肿瘤的发生和进展,特别是精氨酸残基的甲基化。蛋白质精氨酸甲基转移酶(PRMT1-9)已经出现,通过它们甲基化组蛋白和非组蛋白底物的能力,作为癌症的重要监管者。这里,我们对PRMT家族的两个主要成员PRMT1和PRMT5的机制进行了更新概述,控制影响乳腺肿瘤发生的重要信号通路,强调它们是推定的治疗目标。
    Breast cancer is the most common cancer diagnosed in women worldwide. Early-stage breast cancer is curable in ~70-80% of patients, while advanced metastatic breast cancer is considered incurable with current therapies. Breast cancer is a highly heterogeneous disease categorized into three main subtypes based on key markers orientating specific treatment strategies for each subtype. The complexity of breast carcinogenesis is often associated with epigenetic modification regulating different signaling pathways, involved in breast tumor initiation and progression, particularly by the methylation of arginine residues. Protein arginine methyltransferases (PRMT1-9) have emerged, through their ability to methylate histones and non-histone substrates, as essential regulators of cancers. Here, we present an updated overview of the mechanisms by which PRMT1 and PRMT5, two major members of the PRMT family, control important signaling pathways impacting breast tumorigenesis, highlighting them as putative therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质精氨酸甲基转移酶(PRMT)在恶性疟原虫中发挥关键作用,一种导致最致命疟疾的原生动物,使它们成为新型抗疟药的潜在靶标。这里,我们筛选了11种针对恶性疟原虫无性生长的新型PRMT抑制剂,II型PRMT的抑制剂,表现出强的抗疟活性,半最大抑制浓度(IC50)值为1.69±0.04µM。纯化的PfPRMT5的体外甲基转移酶活性被onametostat抑制,在PfPRTM5破坏寄生虫系中发现IC50向onametostat转移,表明PfPRTM5是onametostat的主要目标。与PfPRMT5在介导组蛋白H3R2(H3R2me2s)的对称二甲基化和调节侵袭相关基因中的功能一致,奥美坦治疗导致恶性疟原虫中H3R2me2s水平降低,并导致寄生虫侵入红细胞的缺陷。这项研究为鉴定具有作为新型抗疟药物潜力的特异性PRMT抑制剂提供了起点。
    Protein arginine methyltransferases (PRMTs) play critical roles in Plasmodium falciparum, a protozoan causing the deadliest form of malaria, making them potential targets for novel antimalarial drugs. Here, we screened 11 novel PRMT inhibitors against P. falciparum asexual growth and found that onametostat, an inhibitor for type II PRMTs, exhibited strong antimalarial activity with a half-maximal inhibitory concentration (IC50) value of 1.69 ± 0.04 µM. In vitro methyltransferase activities of purified PfPRMT5 were inhibited by onametostat, and a shift of IC50 to onametostat was found in the PfPRTM5 disruptant parasite line, indicating that PfPRTM5 is the primary target of onametostat. Consistent with the function of PfPRMT5 in mediating symmetric dimethylation of histone H3R2 (H3R2me2s) and in regulating invasion-related genes, onametostat treatment led to the reduction of H3R2me2s level in P. falciparum and caused the defects on the parasite\'s invasion of red blood cells. This study provides a starting point for identifying specific PRMT inhibitors with the potential to serve as novel antimalarial drugs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    赖氨酸和精氨酸甲基化是真核生物中酶活性和转录的重要调控因子。然而,对细菌中的这种共价修饰知之甚少。在这项工作中,我们研究了甲基化在细菌中的作用.通过重新分析来自代表六个门的48个细菌菌株的大型系统蛋白质组学数据集,我们发现,几乎四分之一的细菌蛋白质组被甲基化。许多这些甲基化蛋白在不同的细菌谱系中都是保守的,包括那些参与中心碳代谢和翻译的。具有最保守的甲基化位点的蛋白质是核糖体蛋白L11(bL11)。BL11甲基化五十年来一直是个谜,因为缺失其甲基转移酶PrmA不会导致细胞生长缺陷。比较蛋白质组学分析与大肠杆菌中ΔprmA突变体的无机多磷酸盐和鸟苷四/五磷酸盐测定相结合,表明bL11甲基化对于严格的反应信号传导很重要。在固定阶段,我们发现ΔprmA突变体损害了鸟苷四/五磷酸盐的产生。这导致无机多磷酸盐含量的降低,RNA和核糖体蛋白的积累,和异常的多重体轮廓。总的来说,我们的研究表明,进化上保守的bL11甲基化对于严格的反应信号和核糖体活性调节和周转是重要的。
    目的:60多年前首次发现细菌中的蛋白质甲基化。从那以后,它的功能作用已被确定为只有少数蛋白质。为了更好地理解甲基化在细菌中的功能作用,我们分析了包含48种不同细菌的大型系统蛋白质组学数据集.我们的分析表明,核糖体蛋白通常在保守的残基处被甲基化,表明这些位点的甲基化可能在翻译中具有功能性作用。进一步的分析表明,核糖体蛋白L11的甲基化对于严格的反应信号和核糖体稳态很重要。
    Lysine and arginine methylation is an important regulator of enzyme activity and transcription in eukaryotes. However, little is known about this covalent modification in bacteria. In this work, we investigated the role of methylation in bacteria. By reanalyzing a large phyloproteomics data set from 48 bacterial strains representing six phyla, we found that almost a quarter of the bacterial proteome is methylated. Many of these methylated proteins are conserved across diverse bacterial lineages, including those involved in central carbon metabolism and translation. Among the proteins with the most conserved methylation sites is ribosomal protein L11 (bL11). bL11 methylation has been a mystery for five decades, as the deletion of its methyltransferase PrmA causes no cell growth defects. Comparative proteomics analysis combined with inorganic polyphosphate and guanosine tetra/pentaphosphate assays of the ΔprmA mutant in Escherichia coli revealed that bL11 methylation is important for stringent response signaling. In the stationary phase, we found that the ΔprmA mutant has impaired guanosine tetra/pentaphosphate production. This leads to a reduction in inorganic polyphosphate levels, accumulation of RNA and ribosomal proteins, and an abnormal polysome profile. Overall, our investigation demonstrates that the evolutionarily conserved bL11 methylation is important for stringent response signaling and ribosomal activity regulation and turnover.
    OBJECTIVE: Protein methylation in bacteria was first identified over 60 years ago. Since then, its functional role has been identified for only a few proteins. To better understand the functional role of methylation in bacteria, we analyzed a large phyloproteomics data set encompassing 48 diverse bacteria. Our analysis revealed that ribosomal proteins are often methylated at conserved residues, suggesting that methylation of these sites may have a functional role in translation. Further analysis revealed that methylation of ribosomal protein L11 is important for stringent response signaling and ribosomal homeostasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蛋白质精氨酸甲基转移酶5(PRMT5)通过许多RNA结合蛋白中精氨酸残基的对称二甲基化(Rme2s/SDMA)调节RNA剪接和转录。然而,PRMT5将剪接与转录输出偶联的机制尚不清楚.这里,我们证明了PRMT5活性的一个主要功能是促进新型染色质逃逸,我们称之为基因组保留不完全处理的聚腺苷酸化转录本(GRIPPs)的一大类mRNA。使用新生和总转录组学,刺入受控分级细胞转录组学,和总的和分级的细胞蛋白质组学,我们显示PRMT5抑制和敲低PRMT5SNRP(Sm蛋白)接头蛋白pICln(CLNS1A)-而不是I型PRMT抑制-导致mRNA的严重滞留,SNRPB,和染色质上的SNRPD3蛋白。与大多数成绩单相比,这些染色质捕获的多聚腺苷酸化RNA转录物具有更多的内含子,拼接速度较慢,并富含被拘留的内含子。使用PRMT5抑制和诱导型等基因野生型和精氨酸突变体SNRPB的组合,我们表明,这些snRNPs的精氨酸甲基化对于介导它们的稳态染色质和RNA相互作用至关重要。总的来说,我们得出结论,PRMT5的主要作用是控制转录本加工和剪接完成,以促进染色质逃逸和随后的核输出.
    Protein Arginine Methyltransferase 5 (PRMT5) regulates RNA splicing and transcription by symmetric dimethylation of arginine residues (Rme2s/SDMA) in many RNA binding proteins. However, the mechanism by which PRMT5 couples splicing to transcriptional output is unknown. Here, we demonstrate that a major function of PRMT5 activity is to promote chromatin escape of a novel, large class of mRNAs that we term Genomically Retained Incompletely Processed Polyadenylated Transcripts (GRIPPs). Using nascent and total transcriptomics, spike-in controlled fractionated cell transcriptomics, and total and fractionated cell proteomics, we show that PRMT5 inhibition and knockdown of the PRMT5 SNRP (Sm protein) adapter protein pICln (CLNS1A) -but not type I PRMT inhibition-leads to gross detention of mRNA, SNRPB, and SNRPD3 proteins on chromatin. Compared to most transcripts, these chromatin-trapped polyadenylated RNA transcripts have more introns, are spliced slower, and are enriched in detained introns. Using a combination of PRMT5 inhibition and inducible isogenic wildtype and arginine-mutant SNRPB, we show that arginine methylation of these snRNPs is critical for mediating their homeostatic chromatin and RNA interactions. Overall, we conclude that a major role for PRMT5 is in controlling transcript processing and splicing completion to promote chromatin escape and subsequent nuclear export.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过蛋白质精氨酸甲基转移酶1(PRMT1)进行适当的蛋白质精氨酸甲基化对于维持细胞健康至关重要,而失调通常与疾病有关。因此,如何调节PRMT1的活性是至关重要的,但不清楚。一些研究已经观察到PRMT1的高阶寡聚物种,但是不清楚这些物种是否以生理浓度存在,并且文献中关于寡聚化如何影响活性存在混淆。因此,我们试图确定PRMT1的哪些寡聚物种是生理相关的,并将活性与特定的寡聚体形式定量相关。通过定量的蛋白质印迹,我们确定在多种人细胞系中可用的PRMT1浓度在亚微摩尔至低微摩尔范围内。将等温光谱位移结合数据建模为单体/二聚体/四聚体平衡,其中四聚体解离的EC50为〜20nM。沉降速度和天然聚丙烯酰胺凝胶电泳实验的组合直接证实,生理浓度下PRMT1的主要寡聚物将是二聚体和四聚体。令人惊讶的是,二聚PRMT1变体的甲基转移酶活性与野生型相似,四聚体PRMT1与一些纯化的底物,但是PRMT1的二聚体和四聚体形式在催化效率和对其他底物的底物特异性方面显示出差异。我们的结果定义了PRMT1的寡聚化范例,表明PRMT1的生物物理特征有望在体内支持单体/二聚体/四聚体平衡,并表明PRMT1的寡聚状态可用于调节底物特异性。
    Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity. We therefore sought to determine which oligomeric species of PRMT1 are physiologically relevant, and quantitatively correlate activity with specific oligomer forms. Through quantitative western blotting, we determined that concentrations of PRMT1 available in a variety of human cell lines are in the sub-micromolar to low micromolar range. Isothermal spectral shift binding data were modeled to a monomer/dimer/tetramer equilibrium with an EC50 for tetramer dissociation of ~20 nM. A combination of sedimentation velocity and Native polyacrylamide gel electrophoresis experiments directly confirmed that the major oligomeric species of PRMT1 at physiological concentrations would be dimers and tetramers. Surprisingly, the methyltransferase activity of a dimeric PRMT1 variant is similar to wild type, tetrameric PRMT1 with some purified substrates, but dimer and tetramer forms of PRMT1 show differences in catalytic efficiencies and substrate specificity for other substrates. Our results define an oligomerization paradigm for PRMT1, show that the biophysical characteristics of PRMT1 are poised to support a monomer/dimer/tetramer equilibrium in vivo, and suggest that the oligomeric state of PRMT1 could be used to regulate substrate specificity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    富含甘氨酸和精氨酸(GAR)基序,常见于RNA结合和加工蛋白,可以通过蛋白质精氨酸甲基转移酶在精氨酸残基处对称地(SDMA)或不对称地(ADMA)二甲基化。精氨酸甲基化的蛋白质基序通常由含有Tudor结构域的蛋白质读取。这里,使用GFP陷阱,我们鉴定了一个非都铎结构域蛋白,T细胞3(SART3)识别的鳞状细胞癌抗原,作为SDMA标记的GAR主题的阅读器。SART3的结构分析和诱变表明,位于两个相邻的富含芳香的半四肽(HAT)重复结构域之间的凹槽内的芳香残基对于SART3识别并结合SDMA标记的GAR基序肽至关重要,以及SART3与含GAR基序的蛋白纤丝蛋白和卷曲蛋白之间的相互作用。Further,我们表明,这种阅读器能力的丧失会影响RNA剪接。总的来说,我们的发现扩大了潜在的SDMA读者的范围,包括HAT领域。
    Glycine- and arginine-rich (GAR) motifs, commonly found in RNA-binding and -processing proteins, can be symmetrically (SDMA) or asymmetrically (ADMA) dimethylated at the arginine residue by protein arginine methyltransferases. Arginine-methylated protein motifs are usually read by Tudor domain-containing proteins. Here, using a GFP-Trap, we identify a non-Tudor domain protein, squamous cell carcinoma antigen recognized by T cells 3 (SART3), as a reader for SDMA-marked GAR motifs. Structural analysis and mutagenesis of SART3 show that aromatic residues lining a groove between two adjacent aromatic-rich half-a-tetratricopeptide (HAT) repeat domains are essential for SART3 to recognize and bind to SDMA-marked GAR motif peptides, as well as for the interaction between SART3 and the GAR-motif-containing proteins fibrillarin and coilin. Further, we show that the loss of this reader ability affects RNA splicing. Overall, our findings broaden the range of potential SDMA readers to include HAT domains.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质甲基化,类似于DNA甲基化,主要涉及靶向含氮侧链的残基和其他残基的翻译后修饰(PTM)。蛋白质精氨酸甲基化,发生在精氨酸残留物上,主要由蛋白质精氨酸甲基转移酶(PRMTs)介导,它们普遍存在于许多生物体中,并且错综复杂地参与许多生物过程的调节。具体来说,PRMT是基因转录调控过程中的关键,和蛋白质功能调节。异常精氨酸甲基化,特别是在组蛋白中,可以诱导基因表达失调,从而导致癌症的发展。PRMT介导的修饰和癌症研究的最新进展对我们对癌症发生和进展中异常修饰的理解产生了深远的影响。这篇综述将提供这些最新进展的明确概述,目的是增加我们对PRMT在进展中的作用及其在癌症治疗中的潜在应用的认识。
    Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    辅激活因子相关精氨酸甲基转移酶1(CARM1)作为PRMT家族的关键成员,调节精氨酸甲基化至关重要,其与结直肠癌的相关性强调了其作为治疗靶点的潜力。因此,CARM1抑制剂已成为癌症治疗中的潜在治疗剂和癌症研究的有价值的化学工具。尽管CARM1抑制剂研究取得了稳步进展,挑战持续存在于发现有效,同工型选择性,细胞通透性,和体内活性的CARM1抑制剂用于结直肠癌。本文就CARM1及其与大肠癌关系的研究进展作一综述,旨在为结直肠癌的放射治疗提供理论依据。
    Coactivator-associated arginine methyltransferase 1 (CARM1) is significant as a key member of the PRMT family, crucial for regulating arginine methylation, and its association with colorectal cancer underscores its potential as a therapeutic target. Consequently, CARM1 inhibitors have emerged as potential therapeutic agents in cancer treatment and valuable chemical tools for cancer research. Despite steady progress in CARM1 inhibitor research, challenges persist in discovering effective, isoform-selective, cell-permeable, and in vivo-active CARM1 inhibitors for colorectal cancer. This review summarizes the research progress on CARM1 and its relationship with colorectal cancer, aiming to provide a theoretical basis for the radiotherapy of colorectal cancer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    精氨酸甲基化是一种蛋白质翻译后修饰,对骨骼肌质量和功能的发育很重要。尽管如此,我们对健康和疾病背景下精氨酸甲基化调节的理解在很大程度上仍不明确.这里,我们研究了骨骼肌中精氨酸甲基化对运动和肥大生长的反应的调节,以及涉及代谢功能障碍和萎缩的疾病。我们报道了在促进肌肉健康的生理环境下精氨酸甲基化的有限调节,例如在生长和急性运动期间,在胰岛素抵抗的疾病模型中也是如此。相比之下,在以神经支配丧失为特征的萎缩模型中,我们看到了不对称二甲基化的显著重塑,包括肌萎缩侧索硬化症(ALS)患者的肌肉活检。基于质谱的来自ALS个体的骨骼肌的蛋白质组和不对称精氨酸二甲基组的定量显示了793个调节蛋白的最大的蛋白质变化汇编。以及关键肌节蛋白和细胞骨架蛋白的不对称二甲基精氨酸(aDMA)的新型位点特异性变化。最后,我们表明,体内PRMT1和aDMA的过表达导致小鼠抗疲劳性和功能恢复增加。我们的研究为不对称二甲基化作为肌肉病理生理学的调节剂提供了证据,并为许多甲基化和非甲基化蛋白质提供了宝贵的蛋白质组学资源和基本原理。包括PRMT1,将致力于ALS的治疗发展。
    Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甜菜碱-同型半胱氨酸甲基转移酶(BHMT)调节蛋白质甲基化,并与肿瘤发生相关;然而,BHMT在肝癌发生中的作用和调节仍未被研究。这里,我们使用198例患者的组织样本确定了BHMT在肝细胞癌(HCC)发生和进展中的临床意义。经常发现BHMT(86.6%)在HCC组织中以相对较低的水平表达,并且与HCC患者的总体生存率呈正相关。Bhmt过表达在体外和体内有效抑制肝癌细胞中的几种恶性表型,而Bhmt(Bhmt-/-)的完全敲除产生相反的效果。我们结合了蛋白质组学,代谢组学,和分子生物学策略,并检测到Bhmt-/-通过增强DEN诱导的HCC小鼠和皮下荷瘤模型中葡萄糖-6-磷酸脱氢酶(G6PD)和PPP代谢的活性来促进肝癌发生和肿瘤进展。相比之下,用AAV8-Bhmt注射液或G6PD的药理学抑制来恢复Bhmt,从而减轻肝癌的发生。此外,共免疫沉淀鉴定了G6PD的单甲基化修饰,BHMT调控G6PD的甲基化。蛋白质序列分析,特异性抗体的产生和应用,和定点诱变表明精氨酸残基246处的G6PD甲基化。此外,我们建立了双向调节的BHMT细胞模型,结合甲基化缺陷型G6PD突变体证明BHMT增强了G6PD的精氨酸甲基化,从而抑制G6PD活性,这反过来又抑制了肝癌的发生。一起来看,这项研究揭示了由于BHMT缺乏导致肝癌发生的新的甲基化调节机制,提示肝癌治疗的潜在治疗策略。
    Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt-/-) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt-/- promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号