alewife

  • 文章类型: Journal Article
    alewife(Alosapseudoharengus)是一种栖息在北美东北部水域的鲱鱼。这种猎物是食鱼鸟类的重要饲料,哺乳动物,和鱼类在河口和海洋生态系统。在一项旨在识别该物种潜在新兴病原体的发现项目中,我们从从莫里斯河收集的临床正常的妻子获得了新型嗜肝DNA病毒(ApHBV)的全基因组,伟大的鸡蛋港河,还有新泽西的特拉华河,2015-2018年美国。这种先前未描述的嗜肝DNA病毒含有3146个核苷酸的环状DNA基因组。聚合酶蛋白的系统发育分析将该病毒置于变肝DNA病毒(家族:Hepadnaviridae;属:变肝DNA病毒)的进化枝中。在感染鱼的内部器官中没有病理学的证据,并且通过电子显微镜在肝组织中未观察到病毒体。我们开发了基于Taqman的定量(qPCR)检测方法,筛选了2015年至2018年收集的182名个体,并检测到其他qPCR阳性(n=6)。2018年获得了一个额外的完整基因组,它与第一种病毒具有99.4%的基因组核苷酸同一性。在两个基因组之间观察到单核苷酸多态性,包括聚合酶和表面蛋白的7/9和12/8同义与非同义突变,分别。虽然没有证据表明这种病毒与该物种的疾病相关,妻子是管理关注的迁徙跨辖区鱼类。使用从头测序和其他先进技术鉴定微生物制剂是了解疾病生态学以进行知情人群管理的关键方面。
    The alewife (Alosa pseudoharengus) is an anadromous herring that inhabits waters of northeastern North America. This prey species is a critical forage for piscivorous birds, mammals, and fishes in estuarine and oceanic ecosystems. During a discovery project tailored to identify potentially emerging pathogens of this species, we obtained the full genome of a novel hepadnavirus (ApHBV) from clinically normal alewives collected from the Maurice River, Great Egg Harbor River, and Delaware River in New Jersey, USA during 2015-2018. This previously undescribed hepadnavirus contained a circular DNA genome of 3146 nucleotides. Phylogenetic analysis of the polymerase protein placed this virus in the clade of metahepadnaviruses (family: Hepadnaviridae; genus: Metahepadnavirus). There was no evidence of pathology in the internal organs of infected fish and virions were not observed in liver tissues by electron microscopy. We developed a Taqman-based quantitative (qPCR) assay and screened 182 individuals collected between 2015 and 2018 and detected additional qPCR positives (n = 6). An additional complete genome was obtained in 2018 and it has 99.4% genome nucleotide identity to the first virus. Single-nucleotide polymorphisms were observed between the two genomes, including 7/9 and 12/8 synonymous vs nonsynonymous mutations across the polymerase and surface proteins, respectively. While there was no evidence that this virus was associated with disease in this species, alewives are migratory interjurisdictional fishes of management concern. Identification of microbial agents using de novo sequencing and other advanced technologies is a critical aspect of understanding disease ecology for informed population management.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Anadromous river herring have declined in many parts of their range, leading to fisheries management efforts to help repopulate this species by improving connectivity of rivers and restoring populations by fish transfers. With data lacking on parasites in these species, this study sought to better understand myxozoans across various life stages and habitats in river herring populations in New Jersey, USA. We compared fish from riverine habitats during early-life growth and adults returning to spawn, marine-phase fish, and landlocked Alewife populations. Three myxozoan species were identified in young-of-the-year (YOY) anadromous river herring, including Kudoa clupeidae in the skeletal musculature, Myxobolus mauriensis in the rib cartilage, and an uncharacterized coelozoic myxozoan within the lumen of mesonephric tubules. In YOY river herring, Blueback Herring were 2 times more likely to be infected by K. clupeidae than Alewife (p = 0.019) and in the Maurice River, fish were 4 times more likely to be infected with M. mauriensis than fish from Great Egg Harbor River (p = 0.000) and 11 times more likely than the Delaware River (p = 0.001). Spawning adult river herring were infected with a previously undescribed myxozoan parasite infecting the kidney. Sequencing the 18S rDNA indicated this species is closely related to Ortholinea species. Myxobolus mauriensis and the Ortholinea-like species were absent from marine-phase river herring indicating that infections were linked to river environments occurring during early-life growth and spawning, respectively. No myxozoans were present in landlocked Alewife, showing that similar infections occurring in rivers were absent in lake environments in the region.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    淡水栖息地的改变和海洋渔业会影响现有鱼类,人口规模的波动引发了保护问题和协调管理。我们描述了两组96个单核苷酸多态性(SNP)测定法的开发和表征,这些测定法用于两种无性系的腺苷鱼类,阿列夫和蓝背鲱鱼(统称为河鲱鱼),原产于北美大西洋沿岸。我们使用来自高通量DNA测序的数据来发现SNP,然后开发了用于对每个物种中96个个体基因座进行基因分型的分子遗传测定。这两组试验用多个种群进行了验证,这些种群涵盖了两个物种的地理范围和已知的区域遗传种群。本文开发的SNP小组准确地解析了先前使用微卫星鉴定的蜜环鱼和蓝背鲱鱼的遗传种群结构,并以高精度将个体分配到区域起源种群。这些遗传标记,它们生成易于共享和组合的数据,将极大地促进河流鲱鱼的持续保护和管理,包括将海洋捕获的个体遗传分配给原产地。
    Freshwater habitat alteration and marine fisheries can affect anadromous fish species, and populations fluctuating in size elicit conservation concern and coordinated management. We describe the development and characterization of two sets of 96 single nucleotide polymorphism (SNP) assays for two species of anadromous alosine fishes, alewife and blueback herring (collectively known as river herring), that are native to the Atlantic coast of North America. We used data from high-throughput DNA sequencing to discover SNPs and then developed molecular genetic assays for genotyping sets of 96 individual loci in each species. The two sets of assays were validated with multiple populations that encompass both the geographic range and the known regional genetic stocks of both species. The SNP panels developed herein accurately resolved the genetic stock structure for alewife and blueback herring that was previously identified using microsatellites and assigned individuals to regional stock of origin with high accuracy. These genetic markers, which generate data that are easily shared and combined, will greatly facilitate ongoing conservation and management of river herring including genetic assignment of marine caught individuals to stock of origin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Over the last 300 years, interactions between alewives and zooplankton communities in several lakes in the U.S. have caused the alewives\' morphology to transition rapidly from anadromous to landlocked. Lakes with landlocked alewives contain smaller-bodied zooplankton than those without alewives. Landlocked adult alewives display smaller body sizes, narrower gapes, smaller inter-gill-raker spacings, reach maturity at an earlier age, and are less fecund than anadromous alewives. Additionally, landlocked alewives consume pelagic prey exclusively throughout their lives whereas anadromous alewives make an ontogenetic transition from pelagic to littoral prey. These rapid, well-documented changes in the alewives\' morphology provide important insights into the morphological evolution of fish. Predicting the morphological evolution of fish is crucial for fisheries and ecosystem management, but the involvement of multiple trophic interactions make predictions difficult. To obtain an improved understanding of rapid morphological change in fish, we developed an individual-based model that simulated rapid changes in the body size and gill-raker count of a fish species in a hypothetical, size-structured prey community. Model parameter values were based mainly on data from empirical studies on alewives. We adopted a functional trait approach; consequently, the model explicitly describes the relationships between prey body size, alewife body size, and alewife gill-raker count. We sought to answer two questions: (1) How does the impact of alewife populations on prey feed back to impact alewife size and gill raker number under several alternative scenarios? (2) Will the trajectory of the landlocked alewives\' morphological evolution change after 150-300 years in freshwater?
    Over the first 250 years, the alewives\' numbers of gill-rakers only increased when reductions in their body size substantially improved their ability to forage for small prey. Additionally, alewives\' gill-raker counts increased more rapidly as the adverse effects of narrow gill-raker spacings on foraging for large prey were made less severe. For the first 150-250 years, alewives\' growth decreased monotonically, and their gill-raker number increased monotonically. After the first 150-250 years, however, the alewives exhibited multiple evolutionary morphological trajectories in different trophic settings. In several of these settings, their evolutionary trajectories even reversed after the first 150-250 years.
    Alewives affected the abundance and morphology of their prey, which in turn changed the abundance and morphology of the alewives. Complex low-trophic-level interactions can alter the abundance and characteristics of alewives. This study suggests that the current morphology of recently (∼300 years)-landlocked alewives may not represent an evolutionarily stable state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The objectives of this work were to quantify the spatial and temporal distribution of the occurrence of anadromous fishes (alewife Alosa pseudoharengus, blueback herring Alosa aestivalis and American shad Alosa sapidissima) in the stomachs of demersal fishes in coastal waters of the north-west Atlantic Ocean. Results show that anadromous fishes were detectable and quantifiable in the diets of common marine piscivores for every season sampled. Even though anadromous fishes were not the most abundant prey, they accounted for c. 5-10% of the diet by mass for several marine piscivores. Statistical comparisons of these data with fish diet data from a broad-scale survey of the north-west Atlantic Ocean indicate that the frequency of this trophic interaction was significantly higher within spatially and temporally focused sampling areas of this study than in the broad-scale survey. Odds ratios of anadromous predation were as much as 460 times higher in the targeted sampling as compared with the broad-scale sampling. Analyses indicate that anadromous prey consumption was more concentrated in the near-coastal waters compared with consumption of a similar, but more widely distributed species, the Atlantic herring Clupea harengus. In the context of ecosystem-based fisheries management, the results suggest that even low-frequency feeding events may be locally important, and should be incorporated into ecosystem models.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Evolutionary diversification within consumer species may generate selection on local ecological communities, affecting prey community structure. However, the extent to which this niche construction can propagate across food webs and shape trait variation in competing species is unknown. Here, we tested whether niche construction by different life-history variants of the planktivorous fish alewife (Alosa pseudoharengus) can drive phenotypic divergence and resource use in the competing species bluegill (Lepomis macrochirus). Using a combination of common garden experiments and a comparative field study, we found that bluegill from landlocked alewife lakes grew relatively better when fed small than large zooplankton, had gill rakers better adapted for feeding on small-bodied prey and selected smaller zooplankton compared with bluegill from lakes with anadromous or no alewife. Observed shifts in bluegill foraging traits in lakes with landlocked alewife parallel those in alewife, suggesting interspecific competition leading to parallel phenotypic changes rather than to divergence (which is commonly predicted). Our findings suggest that species may be locally adapted to prey communities structured by different life-history variants of a competing dominant species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The evolutionary theory of senescence predicts that increased rates of extrinsic mortality select for faster declines in fertility and survival with age. One predicted mechanism is that increased mortality favours alleles that enhance fitness early in life at the expense of survival or reproduction later in life (antagonistic pleiotropy). We tested these predictions in natural populations of Daphnia ambigua from lakes that vary in the severity and duration of fish predation. Daphnia are found in lakes with (i) anadromous alewife (Alosa pseudoharengus) that migrate between marine and freshwater, (ii) permanent landlocked alewife and (iii) no alewife. Daphnia are rare year-round in \'landlocked lakes\' and are seasonally eliminated from the water column in \'anadromous lakes\' due to the very strong predatory impact of anadromous alewife on populations of zooplankton. Previous work has also shown that intense seasonal bouts of predation by anadromous alewife has selected for increased allocation towards growth and reproduction in Daphnia found in lakes with anadromous alewife. Such variation in the risk of mortality and the expression of life-history traits early in life provides the raw materials to test the evolutionary theory of ageing. We reared replicate populations of Daphnia from all three lake types and quantified lifetime rates of offspring production and intrinsic survival. We found no differences in age-related declines in fertility or survival. Daphnia from anadromous lakes produced significantly more offspring throughout their lifetime despite no differences in life span or in the number of reproductive bouts compared with Daphnia from lakes with landlocked and no alewife. The lack of divergence in ageing contradicts the prediction that elevated mortality rates drive evolutionary shifts in ageing. We reconcile these results by considering the predictions of theoretical frameworks that incorporate feedbacks associated with increased mortality such as density- and condition-dependent processes. Our results, which are better explained by a consideration of these processes, thus call for a greater consideration of models that more explicitly consider the ecology of focal organisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号