XDR-TB, extensively drug-resistant tuberculosis

XDR - TB,广泛耐药结核病
  • 文章类型: Journal Article
    结核病(TB)是世界范围内的主要死亡原因之一,特别是在低收入和中等收入国家。全球耐药结核病的发病率和数量正在上升。随着全球化的加剧,结核病耐药菌株的传播已成为全球公共卫生问题。我们介绍了一例先前在印度接受过耐多药(MDR)TB治疗的年轻人,他在美国出现神经系统症状和中枢神经系统TB。他的案例突出了独特的诊断和治疗挑战,随着感染耐药结核病和复杂肺外疾病的患者的增加,这些挑战可能变得更加普遍。
    Tuberculosis (TB) is one of the leading causes of death worldwide, particularly in low- and middle-income countries. The global rates and numbers of drug resistant TB are rising. With increasing globalization, the spread of drug-resistant strains of TB has become a mounting global public health concern. We present a case of a young man previously treated for multi-drug resistant (MDR) TB in India who presented with neurological symptoms and central nervous system TB in the United States. His case highlights unique diagnostic and treatment challenges that are likely to become more commonplace with the increase of patients infected with drug-resistant TB and complicated extrapulmonary disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    2015年诺贝尔生理学或医学奖授予阿维菌素和青蒿素,分别。阿维链霉菌产生的阿维菌素是极好的驱虫药和潜在的抗生素。因为野生型菌株只产生低水平的阿维菌素,许多研究工作都集中在改善阿维菌素的生产,以满足对此类化合物不断增长的需求。本文综述了合成生物学在提高阿维菌素产量方面的广泛应用策略和未来应用前景。借助阿维菌素的基因组测序和对阿维菌素生物合成/调节途径的理解,合成和系统生物技术方法已应用于精密工程。我们专注于生物底盘的设计和合成,零件,设备,以及来自不同微生物的模块来重建和优化它们的动态过程,以及通过4Ms策略(Mine,型号,操纵,和测量)。
    The 2015 Nobel Prize in Physiology or Medicine has been awarded to avermectins and artemisinin, respectively. Avermectins produced by Streptomyces avermitilis are excellent anthelmintic and potential antibiotic agents. Because wild-type strains only produce low levels of avermectins, much research effort has focused on improvements in avermectin production to meet the ever increasing demand for such compounds. This review describes the strategies that have been widely employed and the future prospects of synthetic biology applications in avermectin yield improvement. With the help of genome sequencing of S. avermitilis and an understanding of the avermectin biosynthetic/regulatory pathways, synthetic and systems biotechnology approaches have been applied for precision engineering. We focus on the design and synthesis of biological chassis, parts, devices, and modules from diverse microbes to reconstruct and optimize their dynamic processes, as well as predict favorable effective overproduction of avermectins by a 4Ms strategy (Mine, Model, Manipulation, and Measurement).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号