Visual Pathways

视觉路径
  • 文章类型: Journal Article
    了解环境刺激的编码和解码基础的计算机制是神经科学中的一项至关重要的研究。这种追求的核心是探索大脑如何在其分层结构中代表视觉信息。一个突出的挑战在于辨别动态自然视觉场景处理的神经基础。尽管已经做出了大量的研究努力来表征视觉通路的各个组成部分,对与视觉刺激相关的独特神经编码的系统理解,当他们穿越这个等级森严的景观时,仍然难以捉摸。在这项研究中,我们利用全面的Allen视觉编码-Neuropixels数据集,并利用深度学习神经网络模型的功能来研究神经编码,以响应广泛的大脑区域阵列中的动态自然视觉场景。我们的研究表明,我们的解码模型巧妙地破译了每个不同大脑区域内表现出的神经尖峰模式的视觉场景。从解码性能的比较分析中得出了令人信服的观察结果,表现为视觉皮层和皮层下细胞核内的显着编码能力,与海马神经元内相对降低的编码活性相反。引人注目的是,我们的结果揭示了我们的解码指标与已建立的解剖学和功能层次指数之间的稳健相关性.这些发现证实了与人工视觉刺激相关的视觉编码的现有知识,并阐明了使用动态刺激的这些更深的大脑区域的功能作用。因此,我们的结果提出了一种新的观点,即解码神经网络模型作为量化由神经响应表示的动态自然视觉场景的编码质量的度量标准。从而促进我们对大脑复杂层次结构中视觉编码的理解。
    Understanding the computational mechanisms that underlie the encoding and decoding of environmental stimuli is a crucial investigation in neuroscience. Central to this pursuit is the exploration of how the brain represents visual information across its hierarchical architecture. A prominent challenge resides in discerning the neural underpinnings of the processing of dynamic natural visual scenes. Although considerable research efforts have been made to characterize individual components of the visual pathway, a systematic understanding of the distinctive neural coding associated with visual stimuli, as they traverse this hierarchical landscape, remains elusive. In this study, we leverage the comprehensive Allen Visual Coding-Neuropixels dataset and utilize the capabilities of deep learning neural network models to study neural coding in response to dynamic natural visual scenes across an expansive array of brain regions. Our study reveals that our decoding model adeptly deciphers visual scenes from neural spiking patterns exhibited within each distinct brain area. A compelling observation arises from the comparative analysis of decoding performances, which manifests as a notable encoding proficiency within the visual cortex and subcortical nuclei, in contrast to a relatively reduced encoding activity within hippocampal neurons. Strikingly, our results unveil a robust correlation between our decoding metrics and well-established anatomical and functional hierarchy indexes. These findings corroborate existing knowledge in visual coding related to artificial visual stimuli and illuminate the functional role of these deeper brain regions using dynamic stimuli. Consequently, our results suggest a novel perspective on the utility of decoding neural network models as a metric for quantifying the encoding quality of dynamic natural visual scenes represented by neural responses, thereby advancing our comprehension of visual coding within the complex hierarchy of the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已通过功能磁共振成像(fMRI)可靠地检测了白质(WM)功能活动。以前的研究主要将WM捆绑包作为统一的实体进行检查,从而掩盖了这些束中固有的功能异质性。这里,第一次,我们研究了典型视觉WM束的子束-光学辐射(OR)的功能。我们使用来自HumanConnectome项目(HCP)的7T视网膜变性数据集来重建OR,并根据纤维在初级视觉皮层(V1)中的终止将OR进一步细分为子束。然后应用群体感受野(pRF)模型来评估这些子束的视网膜定位特性,并评估了子束的pRF属性与V1子场的pRF属性的一致性。此外,我们利用HCP工作记忆数据集来评估中央凹和周边OR子束的激活,以及LGN和V1子字段,在0-back和2-back任务期间。然后,我们评估中央凹和外围子束(或子场)之间的2bk-0bk对比度的差异,并进一步检查2bk-0bk对比度和2回任务d-prime之间的潜在关系。结果表明,OR子束的pRF特性表现出标准的视网膜定位特性,并且通常类似于V1子场的特性。值得注意的是,在中央凹和外围OR子束中,2-back任务期间的激活始终超过0-back任务下的激活,以及LGN和V1子字段。中央凹V1的2bk-0bk对比度明显高于周边V1。2-back任务d-prime显示出与中央凹和周围OR纤维的2bk-0bk对比度的强相关性。这些发现表明,OR子束的血氧水平依赖性(BOLD)信号编码高保真的视觉信息,强调在子束水平上评估WM功能活动的可行性。此外,该研究强调了OR在视觉工作记忆的自上而下过程中的作用,而不是视觉信息传递的自下而上过程。最后,这项研究创新性地提出了一种在单个子束水平上分析WM纤维束的新范式,并扩展了对OR函数的理解。
    White matter (WM) functional activity has been reliably detected through functional magnetic resonance imaging (fMRI). Previous studies have primarily examined WM bundles as unified entities, thereby obscuring the functional heterogeneity inherent within these bundles. Here, for the first time, we investigate the function of sub-bundles of a prototypical visual WM tract-the optic radiation (OR). We use the 7T retinotopy dataset from the Human Connectome Project (HCP) to reconstruct OR and further subdivide the OR into sub-bundles based on the fiber\'s termination in the primary visual cortex (V1). The population receptive field (pRF) model is then applied to evaluate the retinotopic properties of these sub-bundles, and the consistency of the pRF properties of sub-bundles with those of V1 subfields is evaluated. Furthermore, we utilize the HCP working memory dataset to evaluate the activations of the foveal and peripheral OR sub-bundles, along with LGN and V1 subfields, during 0-back and 2-back tasks. We then evaluate differences in 2bk-0bk contrast between foveal and peripheral sub-bundles (or subfields), and further examine potential relationships between 2bk-0bk contrast and 2-back task d-prime. The results show that the pRF properties of OR sub-bundles exhibit standard retinotopic properties and are typically similar to the properties of V1 subfields. Notably, activations during the 2-back task consistently surpass those under the 0-back task across foveal and peripheral OR sub-bundles, as well as LGN and V1 subfields. The foveal V1 displays significantly higher 2bk-0bk contrast than peripheral V1. The 2-back task d-prime shows strong correlations with 2bk-0bk contrast for foveal and peripheral OR fibers. These findings demonstrate that the blood oxygen level-dependent (BOLD) signals of OR sub-bundles encode high-fidelity visual information, underscoring the feasibility of assessing WM functional activity at the sub-bundle level. Additionally, the study highlights the role of OR in the top-down processes of visual working memory beyond the bottom-up processes for visual information transmission. Conclusively, this study innovatively proposes a novel paradigm for analyzing WM fiber tracts at the individual sub-bundle level and expands understanding of OR function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过双样本双向孟德尔随机化(MR)分析,研究COVID-19暴露与视神经和视觉通路障碍之间的潜在因果关系,并为肺脑轴提供经验支持。
    这项MR分析利用了来自COVID-19(n=158,783)和视神经和视觉通路疾病(n=412,181)的全基因组关联研究的公开汇总数据,主要涉及欧洲血统的个人。随机效应逆方差加权估计作为主要分析方法,由MR-Egger补充,加权中位数,和加权模式方法。使用Cochran的Q检验评估工具变量的异质性和多效性。留一法敏感性分析,MR-Egger截距测试,MR-PRESSO,和漏斗图评估。
    在正向分析中,逆方差加权方法确定了COVID-19对视神经和视觉通路障碍的显著因果效应(比值比=1.697,95%置信区间:1.086-2.652,p=0.020).MR-Egger回归也观察到方向一致的结果,加权中位数,和加权模式方法。相反,反向分析显示,视神经和视觉通路障碍对COVID-19易感性无因果关系.
    我们的研究结果表明,暴露COVID-19可能会增加发生视神经和视觉通路障碍的风险,支持肺脑轴假说。这些结果强调了警惕监测COVID-19康复患者视觉系统的重要性,并为未来的治疗策略提供了潜在的途径。
    UNASSIGNED: To investigate the potential causal association between COVID-19 exposure and optic nerve and visual pathway disorders through a two-sample bidirectional Mendelian randomization (MR) analysis, and to provide empirical support for the lung-brain axis.
    UNASSIGNED: This MR analysis utilized publicly accessible summary-level data from genome-wide association studies on COVID-19 (n=158,783) and optic nerve and visual pathway diseases (n=412,181), primarily involving individuals of European descent. The random-effect inverse-variance weighted estimation was applied as the main analytical approach, complemented by MR-Egger, weighted median, and weighted mode methods. The heterogeneity and pleiotropy of the instrumental variables were assessed using Cochran\'s Q test, leave-one-out sensitivity analysis, MR-Egger intercept test, MR-PRESSO, and funnel plot evaluations.
    UNASSIGNED: In the forward analysis, the inverse-variance weighted method identified a significant causal effect of COVID-19 on optic nerve and visual pathway disorders (odds ratio = 1.697, 95% confidence interval: 1.086-2.652, p = 0.020). Directionally consistent results were also observed with MR-Egger regression, weighted median, and weighted mode approaches. Conversely, the reverse analysis revealed no causal effects of optic nerve and visual pathway disorders on COVID-19 susceptibility.
    UNASSIGNED: Our findings suggest that COVID-19 exposure may increase the risk of developing optic nerve and visual pathway disorders, supporting the lung-brain axis hypothesis. These results underscore the importance of vigilant monitoring of the visual system in patients recovering from COVID-19 and suggest potential avenues for future therapeutic strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    短缔合纤维(SAF)是人类白质中最丰富的纤维途径。直到最近,SAF不能在体内被全面地映射,因为需要足够高的空间分辨率来映射这些薄且短的路径的扩散加权磁共振成像是不可能的。采集硬件和序列的最新发展使我们能够基于亚毫米空间分辨率扩散加权纤维束成像创建专用的体内方法来绘制SAF,我们在人类原发性(V1)和继发性(V2)视皮层中验证了预期的SAF视网膜位序。这里,我们扩展了我们的原始研究,以评估通过将SAF包含到V3来在较高皮质区域绘制SAF的方法的可行性.我们的结果再现了V2-V3和V1-V3流中SAF的预期视网膜位序,与较长的V1-V3连接相比,较短的V1-V2和V2-V3具有更大的鲁棒性。该方法在体内绘制高阶SAF连接模式的能力是其在大脑中应用的重要一步。
    Short association fibres (SAF) are the most abundant fibre pathways in the human white matter. Until recently, SAF could not be mapped comprehensively in vivo because diffusion weighted magnetic resonance imaging with sufficiently high spatial resolution needed to map these thin and short pathways was not possible. Recent developments in acquisition hardware and sequences allowed us to create a dedicated in vivo method for mapping the SAF based on sub-millimetre spatial resolution diffusion weighted tractography, which we validated in the human primary (V1) and secondary (V2) visual cortex against the expected SAF retinotopic order. Here, we extended our original study to assess the feasibility of the method to map SAF in higher cortical areas by including SAF up to V3. Our results reproduced the expected retinotopic order of SAF in the V2-V3 and V1-V3 stream, demonstrating greater robustness to the shorter V1-V2 and V2-V3 than the longer V1-V3 connections. The demonstrated ability of the method to map higher-order SAF connectivity patterns in vivo is an important step towards its application across the brain.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜马赛克,同型神经元群体的空间组织,被认为是将特定的视觉特征采样到前馈视觉路径中。这项研究的目的是提出一种通用的建模方法,用于精确生成视网膜马赛克并克服以前模型的局限性,特别是在疾病条件下对异常马赛克模式进行建模。
    这里,我们开发了基于优化的成对交互点过程(O-PIPP)。它将优化技术融入到以前的模拟方法中,根据用户设计的优化目标实现对仿真过程的定向控制。为了社区的方便,我们将O-PIPP方法实现到一个Python包和一个网站应用程序中。
    我们表明,与以前的现象学方法相比,O-PIPP可以生成更精确的健康和患病镶嵌的神经空间模式。值得注意的是,通过用O-PIPP模拟的色素性视网膜炎锥形马赛克对视网膜神经回路进行建模,我们阐明了锥马赛克重排如何影响神经节细胞的信息处理。
    O-PIPP提供了一种精确而通用的工具来模拟逼真的马赛克,这可能有助于研究视网膜马赛克在视觉中的功能。
    UNASSIGNED: A retinal mosaic, the spatial organization of a population of homotypic neurons, is thought to sample a specific visual feature into the feedforward visual pathway. The purpose of this study was to propose a universal modeling approach for precisely generating retinal mosaics and overcoming the limitations of previous models, especially in modeling abnormal mosaic patterns under disease conditions.
    UNASSIGNED: Here, we developed the optimization-based pairwise interaction point process (O-PIPP). It incorporates optimization techniques into previous simulation approaches, enabling directional control of the simulation process according to the user-designed optimization target. For the convenience of the community, we implemented the O-PIPP approach into a Python package and a website application.
    UNASSIGNED: We showed that the O-PIPP can generate more precise neural spatial patterns of healthy and diseased mosaics compared to previous phenomenological approaches. Notably, through modeling the retinal neural circuitry with O-PIPP-simulated retinitis pigmentosa cone mosaics, we elucidated how the cone mosaic rearrangement impacted the information processing of ganglion cells.
    UNASSIGNED: The O-PIPP provides a precise and universal tool to simulate realistic mosaics, which could help to investigate the function of retinal mosaics in vision.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    皮质柱的存在,被视为低阶和高阶信息处理的计算单元,长期以来一直与高度进化的大脑有关,以前的研究表明它们在啮齿动物中不存在。然而,最近的发现揭示了Long-Evans大鼠初级视觉皮层(V1)中存在眼优势柱(ODC)。这些域表现出从第2层到第6层的连续性,确认它们是真正的ODC。值得注意的是,在布朗挪威大鼠中也观察到ODC,一种与野鼠密切相关的品系,表明ODCs在自然生存环境中的生理相关性,尽管白化病大鼠缺乏它们。这一发现使研究人员能够使用多学科方法探索皮质柱的发育和可塑性,利用涉及数百个个体的研究,这是对食肉动物和灵长类动物物种的挑战。值得注意的是,发育轨迹根据所检查的方面而有所不同:而膝皮质传入末端的分布甚至在睁眼之前就表明成熟的ODC,与食肉动物/灵长类动物研究中的流行理论一致,皮层神经元尖峰活动的检查显示,直到出生后第35天,未成熟的ODC,这表明功能突触的成熟延迟,这取决于视觉体验。在先前的研究中,这种发育差距可能被认为是眼优势可塑性的“关键时期”。在这篇文章中,我总结了ODC和膝皮质网络的跨物种差异,接下来是关于发展的讨论,可塑性,和大鼠ODCs的进化意义。我在关键期可塑性可能是经验依赖发展的组成部分的场所讨论了有关关键期可塑性的经典和最新研究。因此,这一系列研究促使我们对皮质柱的物种保护和经典关键时期可塑性的理解发生了范式转变。
    The existence of cortical columns, regarded as computational units underlying both lower and higher-order information processing, has long been associated with highly evolved brains, and previous studies suggested their absence in rodents. However, recent discoveries have unveiled the presence of ocular dominance columns (ODCs) in the primary visual cortex (V1) of Long-Evans rats. These domains exhibit continuity from layer 2 through layer 6, confirming their identity as genuine ODCs. Notably, ODCs are also observed in Brown Norway rats, a strain closely related to wild rats, suggesting the physiological relevance of ODCs in natural survival contexts, although they are lacking in albino rats. This discovery has enabled researchers to explore the development and plasticity of cortical columns using a multidisciplinary approach, leveraging studies involving hundreds of individuals-an endeavor challenging in carnivore and primate species. Notably, developmental trajectories differ depending on the aspect under examination: while the distribution of geniculo-cortical afferent terminals indicates matured ODCs even before eye-opening, consistent with prevailing theories in carnivore/primate studies, examination of cortical neuron spiking activities reveals immature ODCs until postnatal day 35, suggesting delayed maturation of functional synapses which is dependent on visual experience. This developmental gap might be recognized as \'critical period\' for ocular dominance plasticity in previous studies. In this article, I summarize cross-species differences in ODCs and geniculo-cortical network, followed by a discussion on the development, plasticity, and evolutionary significance of rat ODCs. I discuss classical and recent studies on critical period plasticity in the venue where critical period plasticity might be a component of experience-dependent development. Consequently, this series of studies prompts a paradigm shift in our understanding of species conservation of cortical columns and the nature of plasticity during the classical critical period.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    视网膜,大脑的解剖学延伸,与大脑的视觉皮层形成生理联系。尽管视网膜结构为评估脑部疾病提供了独特的机会,它们与大脑结构和功能的关系还没有得到很好的理解。在这项研究中,我们使用视网膜和脑成像内表型对眼脑连接进行了系统的跨器官遗传结构分析.我们从多模态磁共振成像(MRI)中确定了视网膜成像生物标志物与大脑结构和功能测量之间的新型表型和遗传联系。涉及初级视觉皮层和视觉通路的许多关联。视网膜成像生物标志物与脑疾病和65个基因组区域的复杂性状共享遗传影响,与18显示与大脑MRI特征的遗传重叠。孟德尔随机化表明视网膜结构与神经和神经精神疾病之间存在双向遗传因果关系,如老年痴呆症。总的来说,我们的发现揭示了眼脑连接的遗传基础,提示视网膜图像可以帮助发现脑部疾病的遗传危险因素以及颅内结构和功能的疾病相关变化。
    The retina, an anatomical extension of the brain, forms physiological connections with the visual cortex of the brain. Although retinal structures offer a unique opportunity to assess brain disorders, their relationship to brain structure and function is not well understood. In this study, we conducted a systematic cross-organ genetic architecture analysis of eye-brain connections using retinal and brain imaging endophenotypes. We identified novel phenotypic and genetic links between retinal imaging biomarkers and brain structure and function measures from multimodal magnetic resonance imaging (MRI), with many associations involving the primary visual cortex and visual pathways. Retinal imaging biomarkers shared genetic influences with brain diseases and complex traits in 65 genomic regions, with 18 showing genetic overlap with brain MRI traits. Mendelian randomization suggests bidirectional genetic causal links between retinal structures and neurological and neuropsychiatric disorders, such as Alzheimer\'s disease. Overall, our findings reveal the genetic basis for eye-brain connections, suggesting that retinal images can help uncover genetic risk factors for brain disorders and disease-related changes in intracranial structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的和目标:糖尿病(DM)的视觉功能障碍是多因素的,可能是由于血管疾病,和代谢异常会影响视网膜,视神经,和视觉路径。视觉诱发电位(VEP)是一种电生理测试,可以量化从视网膜通过视神经的视觉通路的功能完整性,和视觉皮层的视束。在这项研究中,我们旨在调查无视网膜病变的糖尿病患者与健康对照组的视觉通路功能障碍,并寻找与糖尿病神经病变的相关性。糖尿病的持续时间,或HbA1c水平。方法:该研究包括75例糖尿病患者和75例年龄和性别匹配的对照。在MedtronicEMGEP机上使用模式反转刺激方法记录VEP,在糖尿病患者和健康对照中记录P100潜伏期和N75-P100振幅。结果:与健康对照组相比,糖尿病患者的平均P100潜伏期显着延长,N75-P100振幅显着降低(p<0.001)。在患有周围神经病变的糖尿病患者中,与没有周围神经病变的糖尿病患者相比,P100潜伏期显着延长,N75-P100振幅显着降低。还发现VEPP100潜伏期(p<0.001)与N75-P100振幅(p<0.001)与疾病持续时间呈显着正相关。结论:糖尿病患者在发生视网膜病变或周围神经病变前观察到VEP变化,提示视路功能异常,先于这些并发症的发展。早期临床前视觉通路功能障碍可以采取必要措施减少糖尿病并发症。缩写:DM=糖尿病,VEP=视觉诱发电位,HbA1c=血红蛋白A1c,MRI=磁共振成像,EEG=脑电图,P100=延迟100ms(毫秒)时的正波峰值,N75=延迟75ms(毫秒)时的负波峰值,N145=延迟145ms(毫秒)时的负波峰值,OCT=光学相干断层扫描,PRVEP=模式反转视觉诱发电位,NCS=神经传导研究,SSR=交感皮肤反应,IL1=白细胞介素-1,LIF=白血病抑制因子,CNTF=睫状神经营养因子,TNFα=肿瘤坏死因子-α,TGF-β=转化生长因子-β。
    Aim and objectives: Visual dysfunction in diabetes mellitus (DM) is multifactorial and can be due to vascular disease, and metabolic abnormalities that can affect the retina, optic nerve, and visual pathways. Visual evoked potential (VEP) is an electrophysiological test that can quantify the functional integrity of the visual pathways from the retina via the optic nerves, and optic tracts to the visual cortices. In this study, we aimed to investigate the visual pathway dysfunction among diabetics without retinopathy compared with healthy controls and to look for any correlation with diabetic neuropathy, duration of diabetes, or HbA1c level. Methods: The study included 75 diabetic patients and 75 age and sex-matched controls. VEPs were recorded using the pattern reversal stimulation method on the Medtronic EMG EP machine, and P100 latency and N75-P100 amplitude were recorded in both diabetic patients and healthy controls. Results: Mean P100 latency was significantly prolonged and N75-P100 amplitude significantly reduced among diabetic cases compared to healthy controls (p < 0.001). Among diabetics with peripheral neuropathy, P100 latency was significantly prolonged and N75-P100 amplitude was significantly reduced compared to diabetics without peripheral neuropathy. A significant positive correlation of VEP P100 latency (p < 0.001) and a negative correlation with N75-P100 amplitude (p < 0.001) with duration of disease were also found. Conclusion: VEP changes are observed in diabetics before the development of retinopathy or peripheral neuropathy indicating optic pathway dysfunction, which precedes the development of these complications. Early preclinical visual pathway dysfunction can warrant taking the necessary measures to reduce diabetic complications. Abbreviations: DM = Diabetes Mellitus, VEP = Visual Evoked Potential, HbA1c = Hemoglobin A1 c, MRI = Magnetic Resonance Imaging, EEG = Electroencephalography, P100 = Positive wave peak at latency 100 ms (millisecond), N75 = Negative wave peak at latency 75 ms (millisecond), N145 = Negative wave peak at latency 145 ms (millisecond), OCT = Optical coherence tomography, PRVEP = Pattern Reversal Visual Evoked Potential, NCS = Nerve Conduction Study, SSR = Sympathetic Skin Response, IL1 = Interleukin-1, LIF = Leukemia inhibitory factor, CNTF = Ciliary neurotrophic factor, TNF alpha = Tumor necrosis factor-alpha, TGF-beta = Transforming growth factor-beta.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    区域V4是猕猴视觉皮层层次结构的中级区域,通过整合来自V1和V2等较低区域的多个功能隔室的前馈输入,并向下颞叶的许多区域提供前馈输入,在皮层视觉处理中发挥关键功能。顶叶,和前额叶皮层.虽然许多先前的V4成像研究已经分析了对颜色的差异响应,定位,视差,和运动刺激,许多细节的空间组织显著的色调和方向调整尚未得到充分描述。内在皮层单条件响应的支持向量机(SVM)解码用于生成V4中色调和方向调整的高分辨率图。与V1和V2一样,V4包含围绕风车中心组织的等向域图。V4包含由围绕风车中心的等色调域组成的色调图。与在先前的皮质区域中观察到的相比,这些风车的圆形组织更接近地代表了对色调的感知。色调显著调整的域占据取向域表面的大约四倍,很大程度上彼此隔离,重叠大约5%。色调和方向风车的空间组织及其域与V2的薄和条纹间隔室产生的大部分分离的输入基本一致。这种模块化的处理分离表明,颜色和形状的进一步整合必须发生在接受V4直接投射的下颞叶皮层区域。
    Area V4 is an intermediate-level area of the macaque visual cortical hierarchy that serves key functions in visual processing by integrating inputs from lower areas such as V1 and V2 and providing feedforward inputs to many higher cortical areas. Previous V4 imaging studies have focused on differential responses to color, orientation, disparity, and motion stimuli, but many details of the spatial organization of significant hue and orientation tuning have not been fully described. We used support vector machine (SVM) decoding of intrinsic cortical single-condition responses to generate high-resolution maps of hue and orientation tuning and to describe the organization of hue and orientation pinwheels in V4. Like V1 and V2, V4 contains maps of orientation that are organized as pinwheels. V4 also contains maps of hue that are organized as pinwheels, whose circular organization more closely represents the perception of hue than is observed in antecedent cortical areas. Unlike V1, where orientation is continuously mapped across the surface, V4 hue and orientation pinwheels are organized in limited numbers of pinwheel sequences. The organization of these sequences and the distance between pinwheels may provide insight into the functional organization of V4. Regions significantly tuned for hue occupy roughly four times that of the orientation, are largely separated from each other, and overlap by roughly 5%. This spatial organization is largely consistent with segregated inputs arising from V2 thin and interstripes. This modular organization of V4 suggests that further integration of color and shape might occur in higher areas in inferotemporal cortical.NEW & NOTEWORTHY The representation of hue and orientation in macaque monkey area V4 was determined by intrinsic cortical imaging of responses to isoluminant hues and achromatic grating stimuli. Vector summation of support vector machine (SVM) decoded single-condition responses was used to generate hue and orientation maps that, like V1 orientation maps, were both characterized by distinct pinwheel patterns. These data suggest that pinwheels are an important structure to represent different stimulus features across multiple visual cortical areas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号