Vanadates

Vanadates
  • 文章类型: Journal Article
    本研究描述了一种基于原钒酸钠(SOV)的新型抗菌机制,碱性磷酸酶抑制剂.扫描电子显微镜(SEM),透射电子显微镜(TEM)和原子力显微镜(AFM)用于检查测试生物的表面形态,大肠杆菌(E.大肠杆菌),在各种抗菌阶段。我们的结果表明,SOV通过攻击细胞壁的生长和发育来杀死细菌,留下大肠杆菌的外膜完整。我们的抗菌测试表明,SOV对大肠杆菌和乳酸乳球菌的MIC(L.乳酸)为40μM。量子力学计算和振动光谱的结合表明,SOV的钒酸盐与Ca2和Mg2强配位,它们是调节细菌细胞壁合成的磷酸酶的活动中心。目前的研究首次提出了SOV攻击细胞壁引起的抗菌机制。
    The present study describes a novel antimicrobial mechanism based on Sodium Orthovanadate (SOV), an alkaline phosphatase inhibitor. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to examine the surface morphologies of the test organism, Escherichia coli (E. coli), during various antibacterial phases. Our results indicated that SOV kills bacteria by attacking cell wall growth and development, leaving E. coli\'s outer membrane intact. Our antimicrobial test indicated that the MIC of SOV for both E. coli and Lactococcus lactis (L. lactis) is 40 μM. A combination of quantum mechanical calculations and vibrational spectroscopy revealed that divanadate from SOV strongly coordinates with Ca2+ and Mg2+, which are the activity centers for the phosphatase that regulates bacterial cell wall synthesis. The current study is the first to propose the antibacterial mechanism caused by SOV attacking cell wall.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    耐药性一直是癌症化疗的主要问题,特别是对于侵袭性的多形性胶质母细胞瘤,异质性和复发,五年生存率<3%,临床治疗方法有限。为了克服这个问题,最近在寻找通过各种非凋亡途径诱导肿瘤细胞死亡的药物方面已经付出了巨大的努力。在目前的工作中,我们首次报道了钒基复合物,即双(乙酰丙酮)氧化钒(IV)(VO(acac)2),可引起有丝分裂灾难和以灾难性的巨噬细胞液泡积累为特征的细胞性死亡,尤其是在胶质母细胞瘤细胞(GC)中。因此,VO(acac)2在体外(IC50=4-6μM)和体内模型中都强烈抑制了GC的生长,并且比目前的标准治疗药物替莫唑胺更有效。与正常神经细胞相比,GC的选择性指数高达10或更高。重要的是,GC对钒处理反应良好,无论它们是否携带引起耐药性的IDH1野生型基因。VO(acac)2可能通过Rac-丝裂原活化蛋白激酶激酶4(MKK4)-c-JunN末端激酶(JNK)信号通路诱导瘤形成。此外,VO(acac)2诱导的细胞瘤不是通过免疫原性机制,使氧钒复合物对介入治疗安全。总的来说,我们的结果可能会促进新型钒配合物的开发,有望用于治疗神经恶性肿瘤细胞。
    Drug resistance has been a major problem for cancer chemotherapy, especially for glioblastoma multiforme that is aggressive, heterogeneous and recurrent with <3% of a five-year survival and limited methods of clinical treatment. To overcome the problem, great efforts have recently been put in searching for agents inducing death of tumor cells via various non-apoptotic pathways. In the present work, we report for the first time that vanadyl complexes, i.e. bis(acetylacetonato)oxidovanadium (IV) (VO(acac)2), can cause mitotic catastrophe and methuotic death featured by catastrophic macropinocytic vacuole accumulation particularly in glioblastoma cells (GCs). Hence, VO(acac)2 strongly suppressed growth of GCs with both in vitro (IC50 = 4-6 μM) and in vivo models, and is much more potent than the current standard-of-care drug Temozolomide. The selective index is as high as ∼10 or more on GCs over normal neural cells. Importantly, GCs respond well to vanadium treatment regardless whether they are carrying IDH1 wild type gene that causes drug resistance. VO(acac)2 may induce methuosis via the Rac-Mitogen-activated protein kinase kinase 4 (MKK4)-c-Jun N-terminal kinase (JNK) signaling pathway. Furthermore, VO(acac)2-induced methuosis is not through a immunogenicity mechanism, making vanadyl complexes safe for interventional therapy. Overall, our results may encourage development of novel vanadium complexes promising for treatment of neural malignant tumor cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    温度深刻影响大分子功能,特别是对温度敏感的蛋白质1,2。然而,它的影响通常在非生理温度下进行的生物物理研究中被忽视,可能导致不准确的机械和药理学见解。在这里,我们展示了温度敏感的Ca2激活的离子通道3-7TRPM4的结构和功能的温度依赖性变化。通过使用单粒子冷冻电子显微镜研究在生理温度下制备的TRPM4,我们确定了一种与在较低温度下观察到的不同的“温暖”构象。这种构象是由细胞内结构域中的温度依赖性Ca2+结合位点驱动的,并且对于TRPM4在生理环境中的功能至关重要。我们证明了配体,例如十钒酸盐(正调节剂)8和ATP(抑制剂)9,在生理温度下比在较低温度下结合TRPM4的不同位置10,11,并且这些位点具有真正的功能相关性。我们通过在生理温度下捕获其不同功能状态的结构快照来阐明TRPM4门控机制,揭示了在较低温度下未观察到的通道开口。我们的研究提供了离子通道的温度依赖性配体识别和调制的例子,强调在生理温度下研究大分子的重要性。它还提供了一个潜在的分子框架,用于破译热敏TRPM通道如何感知温度变化。
    Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity1,2. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca2+-activated ion channel3-7. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a \'warm\' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca2+-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator)8 and ATP (an inhibitor)9, bind to different locations of TRPM4 at physiological temperatures than at lower temperatures10,11, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    从放射性废水中消除铀对于环境修复的安全管理和操作至关重要。这里,我们提出了一种具有高酸/碱稳定性的层状钒酸盐,[Me2NH2]V3O7,作为从高度复杂的水溶液中捕获铀酰的优异离子交换剂。该材料具有间接带隙,铁磁特性和包含平行纳米片的花状形态。[Me2NH2]V3O7的层状结构主要由阴离子骨架[V3O7]nn-和插层[Me2NH2]之间的H键相互作用维持。[Me2NH2]V3O7内的[Me2NH2]+可以容易地与UO22+交换。[Me2NH2]V3O7具有很高的交换能力(qm=176.19mg/g),快速动力学(在15分钟内),高去除效率(>99%),以及对过量干扰离子的良好选择性。它还在宽pH范围(2.00-7.12)内显示UO22+离子交换活性。更重要的是,[Me2NH2]V3O7具有有效去除低浓度铀的能力,产生13ppb的残留U浓度,低于EPA定义的典型饮用水中30ppb的可接受限值。[Me2NH2]V3O7还可以有效地将UO22+与Cs+或Sr2+分离,实现迄今为止的最高分离因子(589的SFU/Cs和227的SFU/Sr)。BOMD和DFT计算表明,离子交换的驱动力主要由UO22+和[V3O7]nn-,而离子交换速率受UO22+和[Me2NH2]+的迁移率影响。我们的实验结果表明,[Me2NH2]V3O7可以被认为是一种有前途的环境修复铀清除剂。此外,模拟结果为离子交换提供了有价值的机理解释,并为设计新型离子交换器提供了参考。
    The elimination of uranium from radioactive wastewater is crucial for the safe management and operation of environmental remediation. Here, we present a layered vanadate with high acid/base stability, [Me2NH2]V3O7, as an excellent ion exchanger capturing uranyl from highly complex aqueous solutions. The material possesses an indirect band gap, ferromagnetic characteristic and a flower-like morphology comprising parallel nanosheets. The layered structure of [Me2NH2]V3O7 is predominantly upheld by the H-bond interaction between anionic framework [V3O7]nn- and intercalated [Me2NH2]+. The [Me2NH2]+ within [Me2NH2]V3O7 can be readily exchanged with UO22+. [Me2NH2]V3O7 exhibits high exchange capacity (qm = 176.19 mg/g), fast kinetics (within 15 min), high removal efficiencies (>99%), and good selectivity against an excess of interfering ions. It also displays activity for UO22+ ion exchange over a wide pH range (2.00-7.12). More importantly, [Me2NH2]V3O7 has the capability to effectively remove low-concentration uranium, yielding a residual U concentration of 13 ppb, which falls below the EPA-defined acceptable limit of 30 ppb in typical drinking water. [Me2NH2]V3O7 can also efficiently separate UO22+ from Cs+ or Sr2+ achieving the highest separation factors (SFU/Cs of 589 and SFU/Sr of 227) to date. The BOMD and DFT calculations reveal that the driving force of ion exchange is dominated by the interaction between UO22+ and [V3O7]nn-, whereas the ion exchange rate is influenced by the mobility of UO22+ and [Me2NH2]+. Our experimental findings indicate that [Me2NH2]V3O7 can be considered as a promising uranium scavenger for environmental remediation. Additionally, the simulation results provide valuable mechanistic interpretations for ion exchange and serve as a reference for designing novel ion exchangers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    疟疾是所有寄生虫病中最大的全球健康负担,耐药性是控制努力的主要障碍。偏钒酸钠(NaVO3)对约氏疟原虫(Pyy)具有抗疟活性,然而,其精确的抗疟机制仍然难以捉摸。本研究旨在评估NaVO3的抗疟潜力,评估其遗传毒性,并确定Pyy中活性氧和氮物种(ROS/RNS)的产生。将CD-1小鼠感染并分成两组:一组用NaVO3口服处理(10mg/kg/天,持续4天),另一组未处理。在处理的小鼠中观察到寄生虫血症减少50%。所有实验日都证明了暴露的寄生虫的DNA损伤,随着第五天ROS和RNS的增加,表明可能有抑制寄生虫的作用.结果表明DNA是NaVO3的靶标,但需要进一步研究以充分阐明其抗疟活性的潜在机制。
    Malaria represents the greatest global health burden among all parasitic diseases, with drug resistance representing the primary obstacle to control efforts. Sodium metavanadate (NaVO3) exhibits antimalarial activity against the Plasmodium yoelii yoelii (Pyy), yet its precise antimalarial mechanism remains elusive. This study aimed to assess the antimalarial potential of NaVO3, evaluate its genotoxicity, and determine the production of reactive oxygen and nitrogen species (ROS/RNS) in Pyy. CD-1 mice were infected and divided into two groups: one treated orally with NaVO3 (10 mg/kg/day for 4 days) and the other untreated. A 50% decrease in parasitemia was observed in treated mice. All experimental days demonstrated DNA damage in exposed parasites, along with an increase in ROS and RNS on the fifth day, suggesting a possible parasitostatic effect. The results indicate that DNA is a target of NaVO3, but further studies are necessary to fully elucidate the mechanisms underlying its antimalarial activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    如今,钒酸盐[V(V)]和硝酸盐(NO3-)的组合对含水层的污染很普遍。尽管可以对V(V)和硝酸盐污染的环境进行生物修复,迄今为止,只有有限数量的功能性物种被鉴定出来。本研究证明了反硝化细菌Acidovoraxsp的V(V)还原和反硝化的有效性。毒株BoFeN1.培养120h对V(V)的去除效率为76.5±5.41%,在48小时内完全去除NO3-。抑制剂实验证实了电子传递物质和反硝化酶参与了V(V)和NO3-的生物还原。Cytc和核黄素对胞外V(V)的降低,对醌和EPS的脱除更显著。包括谷胱甘肽和NADH的细胞内还原性化合物直接还原V(V)和NO3-。逆转录定量PCR证实了nirK和napA基因在调节V(V)还原和反硝化中的重要作用。BoFeN1菌株的生物强化使来自受污染含水层的样品的V(V)和NO3-去除效率分别提高了55.3%±2.78%和42.1%±1.04%。这项研究为V(V)和NO3污染的含水层的生物修复提出了新的微生物资源,有助于我们对耦合钒的理解,氮,和碳生物地球化学过程。
    Contamination of aquifers by a combination of vanadate [V(V)] and nitrate (NO3-) is widespread nowadays. Although bioremediation of V(V)- and nitrate-contaminated environments is possible, only a limited number of functional species have been identified to date. The present study demonstrates the effectiveness of V(V) reduction and denitrification by a denitrifying bacterium Acidovorax sp. strain BoFeN1. The V(V) removal efficiency was 76.5 ± 5.41 % during 120 h incubation, with complete removal of NO3- within 48 h. Inhibitor experiments confirmed the involvement of electron transport substances and denitrifying enzymes in the bioreduction of V(V) and NO3-. Cyt c and riboflavin were important for extracellular V(V) reduction, with quinone and EPS more significant for NO3- removal. Intracellular reductive compounds including glutathione and NADH directly reduce V(V) and NO3-. Reverse transcription quantitative PCR confirmed the important roles of nirK and napA genes in regulating V(V) reduction and denitrification. Bioaugmentation by strain BoFeN1 increased V(V) and NO3- removal efficiency by 55.3 % ± 2.78 % and 42.1 % ± 1.04 % for samples from a contaminated aquifer. This study proposes new microbial resources for the bioremediation of V(V) and NO3-contaminated aquifers, and contributes to our understanding of coupled vanadium, nitrogen, and carbon biogeochemical processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    缺乏环保,高活性光催化剂用于过氧单硫酸盐(PMS)活化和不清楚的环境风险是重大挑战。在这里,我们开发了双S方案Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3光催化剂来激活PMS,并研究了其对小麦种子萌发的影响。我们观察到通过在BiVO4的(010)和(110)表面上沉积Fe2O3来改善电荷分离。这种增强归因于在Fe2O3/BiVO4(110)和BiVO4(010)/Fe2O3的界面处形成了双S方案电荷转移机制。通过将PMS引入系统,光生电子有效激活PMS,产生活性氧(ROS),如羟基自由基(·OH)和硫酸根自由基(SO4·-)。在测试的系统中,20%Fe2O3/BiVO4/Vis/PMS体系对诺氟沙星(NOR)的去除具有最高的催化效率,在40分钟内达到95%。这是Fe2O3/BiVO4/PMS系统的催化效率的两倍,是Fe2O3/BiVO4体系的1.8倍,是BiVO4系统的5倍。种子萌发实验表明,Fe2O3/BiVO4异质结有利于小麦种子萌发,而PMS有显著的负面影响。这项研究为开发高效和可持续的光催化系统从废水中去除有机污染物提供了宝贵的见解。
    A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高性能生物传感器的开发是纳米酶领域的重点,但是目前在生物相容性和可回收性方面的局限性阻碍了它们更广泛的应用。在这里,我们通过构建具有生物相容性的聚(乙二醇)(PEG)修饰的核-壳纳米杂化物来解决这些挑战,该修饰使用原钒酸离子和液态金属(LM)(VOx@EGaIn-PEG)之间的电置换反应。通过利用LM表面氧化物的优异电荷转移特性和低带隙,VOx@EGaIn-PEG异质结可以有效地将过氧化氢转化为羟基自由基,表现出优异的过氧化物酶样活性和稳定性(Km=490μM,vmax=1.206μM/s)。LM独特的自我修复特性进一步实现了VOx@EGaIn-PEG纳米酶的恢复和再生,从而大大降低了生物检测的成本。在此基础上,我们开发了一种适用于生物系统的纳米酶比色传感器,并将其与智能手机集成,以创建一个高效的定量检测平台。该平台可以方便而灵敏地检测血清样品中的葡萄糖,在10-500μM的范围内表现出良好的线性关系,检测限为2.35μM。LM的显着催化潜力,结合其生物相容性和再生特性,为催化和生物医学领域的应用提供了有价值的见解。
    The development of high-performance biosensors is a key focus in the nanozyme field, but the current limitations in biocompatibility and recyclability hinder their broader applications. Herein, we address these challenges by constructing core-shell nanohybrids with biocompatible poly(ethylene glycol) (PEG) modification using a galvanic replacement reaction between orthovanadate ions and liquid metal (LM) (VOx@EGaIn-PEG). By leveraging the excellent charge transfer properties and the low band gap of the LM surface oxide, the VOx@EGaIn-PEG heterojunction can effectively convert hydrogen peroxide into hydroxyl radicals, demonstrating excellent peroxidase-like activity and stability (Km = 490 μM, vmax = 1.206 μM/s). The unique self-healing characteristics of LM further enable the recovery and regeneration of VOx@EGaIn-PEG nanozymes, thereby significantly reducing the cost of biological detection. Building upon this, we developed a nanozyme colorimetric sensor suitable for biological systems and integrated it with a smartphone to create an efficient quantitative detection platform. This platform allows for the convenient and sensitive detection of glucose in serum samples, exhibiting a good linear relationship in the range of 10-500 μM and a detection limit of 2.35 μM. The remarkable catalytic potential of LM, combined with its biocompatibility and regenerative properties, offers valuable insights for applications in catalysis and biomedical fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甲醛(HCHO)是主要的室内空气污染物之一,并有效地消除它,特别是在低浓度下,仍然具有挑战性。在这项研究中,采用超声共混技术开发了BiVO4-TiO2催化剂,用于室内低水平HCHO的光催化氧化。晶体结构,表面形态,元素分布,用XRD检测了催化剂的活性氧化物质,SEM,TEM,UV-Vis,EDS,和ESR技术。我们的结果表明,BiVO4-TiO2催化剂,通过超声波共混制备,表现出良好的氧化性能和稳定性。HCHO浓度在48小时内从1.050降至0.030mg/m3,去除率达97.1%。BiVO4和TiO2之间的协同作用提高了分离光生载流子的效率,并最小化了光生电子和空穴之间复合的可能性。此外,这种协同作用显着增强了催化剂上羟基自由基(·OH)的存在,导致氧化性能优于BiVO4或TiO2。我们的研究为开发新的光催化剂解决HCHO污染提供了宝贵的见解。
    Formaldehyde (HCHO) is one of the primary indoor air pollutants, and efficiently eliminating it, especially at low concentrations, remains challenging. In this study, BiVO4-TiO2 catalyst was developed using ultrasonic blending technology for the photocatalytic oxidation of low-level indoor HCHO. The crystal structure, surface morphology, element distribution, and active oxidation species of the catalyst were examined using XRD, SEM, TEM, UV-Vis, EDS, and ESR techniques. Our results demonstrated that the BiVO4-TiO2 catalyst, prepared by ultrasonic blending, exhibited good oxidation performance and stability. The HCHO concentration reduced from 1.050 to 0.030 mg/m3 within 48 h, achieving a removal rate of 97.1%. The synergy between BiVO4 and TiO2 enhanced the efficiency of separating photogenerated carriers and minimized the likelihood of recombination between photogenerated electrons and holes. Additionally, this synergy significantly enhanced the presence of hydroxyl radicals (·OH) on the catalyst, resulting in an oxidation performance superior to that of either BiVO4 or TiO2. Our research offers valuable insights for the development of new photocatalysts to address HCHO pollution.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号