VND3207

  • 文章类型: Journal Article
    背景:放射性肺纤维化(RIPF)是一种慢性,进步,放疗后发展的不可逆的肺间质疾病。尽管先前的一些研究集中在肺上皮细胞中上皮-间质转化(EMT)的机制上,参与这一过程的基本因素仍然知之甚少。当细胞遭受辐射诱导的损伤时,DNA依赖性蛋白激酶催化亚基(DNA-PKcs)表现出很强的修复能力;DNA-PKcs在RIPF期间是否调节EMT尚不清楚。
    目的:探讨DNA-PKcs在RIPF中的作用及分子机制,为利用DNA-PKcs靶向药物预防RIPF提供重要的理论依据。
    方法:通过Cas9/sgRNA技术产生DNA-PKcs敲除(DPK-/-)小鼠,并以20Gy剂量进行全胸部电离辐射(IR)。在整个胸部IR之前,小鼠胃内给药DNA-PKcs靶向药物VND3207.在IR后1和5个月收集肺组织。
    结果:肺纤维化(PF)患者中DNA-PKcs的表达较低。DNA-PKcs缺乏通过促进肺上皮细胞的EMT而显著加剧RIPF。机械上,shRNA或抑制剂NU7441的DNA-PKcs缺失维持了Twist1的蛋白质稳定性。此外,AKT1介导DNA-PKcs与Twist1的相互作用。胰岛素样生长因子-1(IGF-1)阻断了DNA-PKcs缺失引起的Twist1高表达和EMT相关变化,AKT1激动剂。辐射防护药物VND3207通过刺激DNA-PKcs的激酶活性来预防IR诱导的EMT并减轻小鼠的RIPF。
    结论:我们的研究阐明了DNA-PKcs在RIPF中的关键作用和机制,并表明它可能是预防RIPF的潜在靶标。
    BACKGROUND: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear.
    OBJECTIVE: To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF.
    METHODS: DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR.
    RESULTS: The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs.
    CONCLUSIONS: Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Vanillin is a natural compound endowed with antioxidant and anti-mutagenic properties. We previously identified the vanillin derivative VND3207 with strong radio-protective and antioxidant effects and found that VND3207 confers survival benefit and protection against radiation-induced intestinal injury (RIII) in mice. We also observed that VND3207 treatment enhanced the expression level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in human lymphoblastoid cells with or without γ-irradiation. DNA-PKcs is a critical component of DNA double strand break repair pathway and also regulates mitotic progression by stabilizing spindle formation and preventing mitotic catastrophe in response to DNA damage. In the present study, we found that VND3207 protected intestinal epithelial cells in vitro against ionizing radiation by promoting cell proliferation and inhibiting cell apoptosis. In addition, VND3207 promoted DNA-PKcs activity by increasing autophosphorylation at S2056 site. Consistent with this, VND3207 significantly decreased the number of γH2AX foci and mitotic catastrophe after radiation. DNA-PKcs deficiency abolished these VND3207 radio-protective effects, indicating that DNA-PKcs activation is essential for VND3207 activity. In conclusion, VND3207 promoted intestinal repair following radiation injury by regulating the DNA-PKcs pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    肠是一种高度辐射敏感的组织,由于全身和局部辐射暴露,其易受结构和功能损伤。不幸的是,目前尚无有效的预防或治疗药物可用于治疗辐射引起的肠损伤.我们观察到香草醛衍生物VND3207通过促进肠再生和增加存活隐窝的数量来改善致命性照射小鼠的存活率。用VND3207预处理显着增加了Lgr5肠干细胞(ISC)及其子细胞的数量,瞬时Ki67+增殖细胞。机械上,VND3207通过增加超氧化物歧化酶水平和总抗氧化能力来降低氧化DNA损伤和脂质过氧化并维持内源性抗氧化状态。此外,VND3207维持适当水平的活化p53,触发细胞周期停滞,但不足以诱导NOXA介导的细胞凋亡,从而确保照射的小肠隐窝细胞中DNA损伤的修复。此外,VND3207治疗可恢复因TBI暴露而改变的肠道细菌菌群结构。总之,VND3207通过减少活性氧诱导的DNA损伤并调节肠上皮细胞中激活的p53的适当水平来促进辐射损伤后的肠修复。
    The intestine is a highly radiosensitive tissue that is susceptible to structural and functional damage due to systemic as well as localized radiation exposure. Unfortunately, no effective prophylactic or therapeutic agents are available at present to manage radiation-induced intestinal injuries. We observed that the vanillin derivative VND3207 improved the survival of lethally irradiated mice by promoting intestinal regeneration and increasing the number of surviving crypts. Pre-treatment with VND3207 significantly increased the number of Lgr5+ intestinal stem cells (ISCs) and their daughter cells, the transient Ki67+ proliferating cells. Mechanistically, VND3207 decreased oxidative DNA damage and lipid peroxidation and maintained endogenous antioxidant status by increasing the level of superoxide dismutase and total antioxidant capacity. In addition, VND3207 maintained appropriate levels of activated p53 that triggered cell cycle arrest but were not sufficient to induce NOXA-mediated apoptosis, thus ensuring DNA damage repair in the irradiated small intestinal crypt cells. Furthermore, VND3207 treatment restores the intestinal bacterial flora structures altered by TBI exposure. In conclusion, VND3207 promoted intestinal repair following radiation injury by reducing reactive oxygen species-induced DNA damage and modulating appropriate levels of activated p53 in intestinal epithelial cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号