Tyrosine-phosphorylation

  • 文章类型: Journal Article
    在研究中,褪黑激素,在Hariana公牛精液中,一种已知的抗氧化剂松果体肽被用作基于三卵黄甘油的精液补充剂中的添加剂,并评估了解冻后的精子特征。在研究中,第一组是没有褪黑激素的对照;第二组,III,IV有0.5mM,1mM,和2mM褪黑激素/80×106精子,分别为治疗组。对来自4头Hariana公牛的32个精液射精进行了冷冻处理,并评估了解冻后的精子特征。精子运动,速度,完整膜的生存能力,与所有其他组相比,IV组的总抗氧化能力显着提高(P<0.05)。与所有其他组相比,IV组的脂质过氧化和总蛋白羰基化显著降低(P<0.05)。冷冻的种群,顶体反应,Ⅳ组细胞凋亡样精子明显减少(P<0.05)。Further,第IV组74kDa蛋白的相对条带强度和对酪氨酸磷酸化蛋白显示阳性免疫反应性的精子百分比降低。孕激素受体配体结合,体外获能反应,第IV组Vanguard距离明显改善(P<0.05)。总之,发现具有2mM褪黑激素的第IV组在冻融后向Hariana公牛精子提供冷冻保护作用方面是最佳的,并且可以在精液冷冻保存期间合适地用作精液添加剂。
    In the study, melatonin, a known antioxidant pineal peptide was used as an additive in the tris-egg yolk glycerol-based semen extender in Hariana bull semen and post-thaw sperm characters were evaluated. In the study, Group I was a control without melatonin; and Group II, III, and IV were having 0.5 mM, 1 mM, and 2 mM melatonin/80 × 106 spermatozoa, respectively were treatment groups. Thirty-two semen ejaculates from 4 Hariana bulls were processed for freezing and post-thaw sperm characteristics were evaluated. Sperm motility, velocity, the viability with intact membrane, and total antioxidant capacity were markedly (P < 0.05) improved in Group IV compared to all other groups. The lipid peroxidation and total protein carbonylation were substantially (P < 0.05) decreased in Group IV compared to all other groups. The population of cryocapacitated, acrosome-reacted, and apoptotic-like spermatozoa were significantly (P < 0.05) decreased in Group IV. Further, the relative band intensity of 74 kDa protein and percent of spermatozoa showing positive immune reactivity to tyrosine-phosphorylated proteins was decreased in Group IV. The progesterone-receptor ligand binding, in vitro capacitation response, and Vanguard distance were markedly (P < 0.05) improved in Group IV. In summary- Group IV having 2 mM melatonin was found to be optimal in providing cryoprotective effects to Hariana bull spermatozoa after freezing-thawing and can be suitably used as a semen additive during semen cryopreservation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Steroid hormones progesterone (P4) and 17β-estradiol (E2) not only have important functions in regulation of reproductive processes in mammals but also have direct effects on spermatozoa. There can be induction of the acrosome reaction in ram spermatozoa by P4 and E2 and, in the present study, there was further investigation of mechanisms underlying this effect. In a medium containing agents that increase cAMP, the presence of both P4 and E2 led to changes in the localization of proteins phosphorylated in tyrosine residues evaluated by indirect immunofluorescence. The inclusion of P4 at 1 μM in the media induced an increase in Ca2+i and mobilization in the area of the acrosome (Fluo-4 and Rhod-5 staining, respectively), an increase in ROS (H2DCFDA staining) and a substantial disruption of the acrosome (evaluated using RCA), while E2 did not have these effects. There were no effects on cAMP concentrations or PKA activity with inclusion of these hormones in the media. The inclusion of P4 at 100 pM in the media led to changes in values for sperm kinematic variables which could indicate there was an inhibition of the hyperactivation caused by agents that induce an increase in cAMP concentrations. In conclusion, results from the present study indicate that P4 and E2 promote mechanisms regulating the acrosome reaction in ram spermatozoa, however, these effects on mechanisms are different for the two hormones, and for E2, require further clarification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The cag type IV secretion system (cag-T4SS) of Helicobacter pylori exploits specific cellular carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), such as CEACAM1, -3, -5, and -6, as cellular receptors for CagA translocation into human gastric epithelial cells. We studied the interaction of H. pylori with human CEACAM1, CEACAM3, and CEACAM6 receptors (hCEACAMs) expressed on myeloid cells from CEACAM-humanized mice. Human and CEACAM-humanized mouse polymorphonuclear neutrophils (PMNs) allowed a specific HopQ-dependent interaction strongly enhancing CagA translocation. Translocated CagA was tyrosine phosphorylated, which was not seen in wild-type (wt) murine neutrophils. In contrast, human or murine bone marrow-derived macrophages and dendritic cells (DCs) revealed a low hCEACAM expression and bacterial binding. CagA translocation and tyrosine-phosphorylation was low and independent of the HopQ-CEACAM interaction. Neutrophils, but not macrophages or DCs, from CEACAM-humanized mice, significantly upregulated the proinflammatory chemokine MIP-1α. However, macrophages showed a significantly reduced amount of CXCL1 (KC) and CCL2 (MCP-1) secretion in CEACAM-humanized versus wt cells. Thus, H. pylori, via the HopQ-CEACAM interaction, controls the production and secretion of chemokines differently in PMNs, macrophages, and DCs. We further show that upon H. pylori contact the oxidative burst of neutrophils and phagocytosis of H. pylori was strongly enhanced, but hCEACAM3/6 expression on neutrophils allowed the extended survival of H. pylori within neutrophils in a HopQ-dependent manner. Finally, we demonstrate that during a chronic mouse infection, H. pylori is able to systemically downregulate hCEACAM1 and hCEACAM6 receptor expression on neutrophils, probably to limit CagA translocation efficiency and most likely gastric pathology.IMPORTANCE Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori, and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori-CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    After mating, spermatophores of signal crayfish are stored on the body of the female for a period before fertilization. This study compared the post-mating protein profile and pattern of protein tyrosine phosphorylation of the signal crayfish spermatophore to that of the freshly ejaculated spermatophore and found substantial differences. Two major bands of tyrosine-phosphorylated proteins of molecular weights 10 and 50kDa were observed in the freshly ejaculated spermatophore of the signal crayfish. While the tyrosine-phosphorylated protein band with molecular weight 10kDa was formed by protein(s) of similar pH, the band with molecular weight of 50kDa consisted of proteins of varying pH. In the post-mating spermatophore, the band with molecular weight of 50kDa was not detected, and an increase in the level of protein tyrosine phosphorylation was observed in the 10kDa band. The microtubular radial arms of the spermatozoon showed a positive reaction to an anti-tyrosine antibody conjugated with gold particles in both the freshly ejaculated and post-mating spermatophores. In conclusion, the male gamete of the signal crayfish undergoes molecular modification during post-mating storage on the body of the female including changes in the level of protein expression and protein tyrosine phosphorylation. Structural similarity of the radial arms in the crayfish immotile spermatozoon with flagellum, which is the main site of protein tyrosine phosphorylation in the mammalian motile spermatozoa, raises questions regarding evolution and function of such organelles across the animal kingdom that must be addressed in the future studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号