TurboID

TurboID
  • 文章类型: Journal Article
    在内膜系统中,多囊泡体(MVB)在将泛素化膜蛋白分选到腔内囊泡中以在与液泡或溶酶体融合时降解中起关键作用。这个过程涉及多蛋白复合物的调节,包括转运(ESCRT)I-III所需的内体分选复合物,和辅助蛋白。尽管在植物细胞中已经鉴定出许多细胞器蛋白质组,与参与MVB生物发生的调节因子相关的特定蛋白质组的信息仍然有限.这里,以ESCRT组件FREE1为例,我们描述了一种通过使用基于TurboID的邻近标记方法来鉴定内体调节子的邻近蛋白的方法。
    In the endomembrane system, multivesicular bodies (MVBs) play a crucial role in sorting ubiquitinated membrane proteins into intraluminal vesicles for degradation upon fusion with vacuoles or lysosomes. This process involves regulations by multiprotein complexes, including endosomal sorting complex required for transport (ESCRT) I-III, and accessory proteins. Although many organellar proteomes have been identified in plant cells, the information of specific proteomes associated with regulators engaged in MVB biogenesis remains limited. Here, using the ESCRT component FREE1 as an example, we describe a method to identify neighboring proteins of endosomal regulators by using an approach of TurboID-based proximity labeling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Sequestosome1(SQSTM1)是一种自噬受体,介导细胞内货物的降解,包括蛋白质聚集体,通过多种蛋白质相互作用。这些相互作用形成了SQSTM1蛋白质网络,这些相互作用是由SQSTM1功能相互作用域介导的,其中包括LIR,PB1、UBA和KIR。细胞生物学的技术进步继续扩大我们对SQSTM1蛋白质网络以及SQSTM1蛋白质网络在细胞生理和疾病状态中的作用关系的了解。在这里,我们通过将TurboID与人蛋白SQSTM1(TurboID::SQSTM1)融合,应用邻近谱标记来研究SQSTM1蛋白相互作用网络。这种嵌合蛋白显示出完善的SQSTM1特征,包括SQSTM1细胞内体的产生,绑定到已知的SQSTM1交互伙伴,并捕获新型SQSTM1蛋白相互作用物。引人注目的是,聚集的tau蛋白改变了SQSTM1的蛋白质相互作用网络,包括许多应激相关蛋白。我们证明了PB1和/或UBA域对绑定网络成员的重要性,包括tau的K18域名。总的来说,我们的工作揭示了SQSTM1蛋白质网络的动态景观,并为研究SQSTM1在细胞生理和疾病状态中的功能提供了资源。
    Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network, and these interactions are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Technological advances in cell biology continue to expand our knowledge of the SQSTM1 protein network and of the relationship of the actions of the SQSTM1 protein network in cellular physiology and disease states. Here we apply proximity profile labeling to investigate the SQSTM1 protein interaction network by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners, and capture of novel SQSTM1 protein interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. We demonstrate the importance of the PB1 and/or UBA domains for binding network members, including the K18 domain of tau. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    近年来,邻近标记已经确立了自己作为一种无偏见和强大的方法来映射特定蛋白质的相互作用。虽然标记酶的生理表达有利于相互作用物的作图,所需细胞系的产生仍然耗时且具有挑战性。使用我们建立的管道,基于抗生素选择快速生成C端和N端CRISPR-Cas9敲入蛋白(KIs),我们能够比较内源性表达时常用标记酶的性能。用TurboID对AP-1复合物的µ亚基进行内源性标记,可以鉴定出已知的相互作用者和货物蛋白,而标记酶融合蛋白的简单过表达无法揭示。我们使用KI策略来比较不同衔接蛋白(AP)复合物和网格蛋白的相互作用组,并且能够组装对每个分选途径具有特异性的潜在相互作用者和货物蛋白列表。我们的方法大大简化了蛋白质在其天然细胞环境中的邻近标记实验的执行,并允许在短短一个月内从CRISPR转染到质谱分析和相互作用组数据。
    In recent years, proximity labeling has established itself as an unbiased and powerful approach to map the interactome of specific proteins. While physiological expression of labeling enzymes is beneficial for the mapping of interactors, generation of the desired cell lines remains time-consuming and challenging. Using our established pipeline for rapid generation of C- and N-terminal CRISPR-Cas9 knock-ins (KIs) based on antibiotic selection, we were able to compare the performance of commonly used labeling enzymes when endogenously expressed. Endogenous tagging of the µ subunit of the AP-1 complex with TurboID allowed identification of known interactors and cargo proteins that simple overexpression of a labeling enzyme fusion protein could not reveal. We used the KI-strategy to compare the interactome of the different adaptor protein (AP) complexes and clathrin and were able to assemble lists of potential interactors and cargo proteins that are specific for each sorting pathway. Our approach greatly simplifies the execution of proximity labeling experiments for proteins in their native cellular environment and allows going from CRISPR transfection to mass spectrometry analysis and interactome data in just over a month.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    病毒受体决定了病毒的组织嗜性,与病毒感染引起的临床结局有一定的关系,这对于识别病毒受体,了解病毒的感染机制和开发进入抑制剂具有重要意义。邻近标记(PL)是一种研究蛋白质-蛋白质相互作用的新技术,但它尚未应用于病毒受体或共受体的鉴定。这里,我们试图通过使用TurboID催化的PL来鉴定SARS-CoV-2的共受体。膜蛋白血管紧张素转换酶2(ACE2)用作诱饵并与TurboID缀合,构建了稳定表达ACE2-TurboID的A549细胞系。在生物素和ATP存在下,SARS-CoV-2假病毒与ACE2-TurboID稳定表达的细胞系孵育,这可以启动TurboID的催化活性,并用生物素标记相邻的内源性蛋白。随后,收获生物素化的蛋白质并通过质谱鉴定。我们鉴定了一种膜蛋白,AXL,已在功能上显示可介导SARS-CoV-2进入宿主细胞。我们的数据表明PL可用于鉴定病毒进入的共受体。
    Virus receptors determine the tissue tropism of viruses and have a certain relationship with the clinical outcomes caused by viral infection, which is of great importance for the identification of virus receptors to understand the infection mechanism of viruses and to develop entry inhibitor. Proximity labeling (PL) is a new technique for studying protein-protein interactions, but it has not yet been applied to the identification of virus receptors or co-receptors. Here, we attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was employed as a bait and conjugated to TurboID, and a A549 cell line with stable expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were incubated with ACE2-TurboID stably expressed cell lines in the presence of biotin and ATP, which could initiate the catalytic activity of TurboID and tag adjacent endogenous proteins with biotin. Subsequently, the biotinylated proteins were harvested and identified by mass spectrometry. We identified a membrane protein, AXL, that has been functionally shown to mediate SARS-CoV-2 entry into host cells. Our data suggest that PL could be used to identify co-receptors for virus entry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质-蛋白质相互作用在细胞稳态和功能的各个方面都起着重要的生物学作用。基于邻近标记质谱的蛋白质组学克服了通常与其他方法相关的挑战,并迅速成为本领域的最新技术。然而,严格控制邻近标记的酶活性和表达水平对于准确识别蛋白质相互作用物至关重要。这里,我们利用T2A自切割肽和非切割突变体来适应实验和对照TurboID设置中的目的蛋白。为了方便和流线型的质粒组装,我们建立了一个金门模块化克隆系统来产生质粒,用于瞬时表达和稳定整合。为了突出我们的T2A拆分/链接设计,我们将其应用于通过TurboID邻近标记鉴定糖皮质激素受体与严重急性呼吸综合征冠状病毒2(SARS-CoV-2)核衣壳和非结构蛋白7(NSP7)蛋白的蛋白相互作用。我们的结果表明,我们的T2A拆分/链接提供了一个适当的控制,建立在先前在现场建立的控制要求。
    Protein-protein interactions play an important biological role in every aspect of cellular homeostasis and functioning. Proximity labeling mass spectrometry-based proteomics overcomes challenges typically associated with other methods and has quickly become the current state of the art in the field. Nevertheless, tight control of proximity-labeling enzymatic activity and expression levels is crucial to accurately identify protein interactors. Here, we leverage a T2A self-cleaving peptide and a non-cleaving mutant to accommodate the protein of interest in the experimental and control TurboID setup. To allow easy and streamlined plasmid assembly, we built a Golden Gate modular cloning system to generate plasmids for transient expression and stable integration. To highlight our T2A Split/link design, we applied it to identify protein interactions of the glucocorticoid receptor and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid and non-structural protein 7 (NSP7) proteins by TurboID proximity labeling. Our results demonstrate that our T2A split/link provides an opportune control that builds upon previously established control requirements in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Seipin,细胞脂滴(LD)组装的关键蛋白质,在内质网(ER)和LD之间的界面处低聚化,以促进中性脂质包装。使用邻近标签,我们确定了四种蛋白质-Ldo45,Ldo16,Tgl4和Pln1-它们被招募到酵母seipin附近,Sei1-Ldb16复合体,仅当seipin功能完好无损时,因此称为seipin附属因素。本地化研究在ER-LD接触部位识别Tgl4,与LD表面的Ldo45、Ldo16和Pln1相反。具有受损seipin功能的细胞导致这些具有异常LD的蛋白质的不均匀分布,支持seipin在协调他们与LD的联系方面的核心作用。任何seipin辅助因子的过表达都会导致LD聚集并影响LD蛋白分布的一个子集,强调其化学计量的重要性。虽然单因子突变显示微小的LD形态变化,组合突变具有累加效应。最后,我们提供证据表明,在缺乏中性脂质的情况下,seipin辅助因子与seipin组装并相互作用,并在LD形成诱导过程中发生动态重排,Ldo45充当中央枢纽,招募其他因素与seipin复合体相互作用。
    Seipin, a crucial protein for cellular lipid droplet (LD) assembly, oligomerizes at the interface between the endoplasmic reticulum and LDs to facilitate neutral lipid packaging. Using proximity labeling, we identified four proteins-Ldo45, Ldo16, Tgl4, and Pln1-that are recruited to the vicinity of yeast seipin, the Sei1-Ldb16 complex, exclusively when seipin function is intact, hence termed seipin accessory factors. Localization studies identified Tgl4 at the endoplasmic reticulum-LD contact site, in contrast to Ldo45, Ldo16, and Pln1 at the LD surface. Cells with compromised seipin function resulted in uneven distribution of these proteins with aberrant LDs, supporting a central role of seipin in orchestrating their association with the LD. Overexpression of any seipin accessory factor causes LD aggregation and affects a subset of LD protein distribution, highlighting the importance of their stoichiometry. Although single factor mutations show minor LD morphology changes, the combined mutations have additive effects. Lastly, we present evidence that seipin accessory factors assemble and interact with seipin in the absence of neutral lipids and undergo dynamical rearrangements during LD formation induction, with Ldo45 acting as a central hub recruiting other factors to interact with the seipin complex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    G蛋白偶联受体(GPCRs)是七螺旋跨膜蛋白,其响应于其特异性配体(包括许多脂质介质)而介导各种细胞内信号传导事件。尽管GPCR分子相互作用的分析对于理解不同的细胞内信号事件至关重要,由于GPCRs的疏水性和它们的动态分子相互作用,通过常规共免疫沉淀方法亲和纯化相互作用蛋白具有挑战性。由TurboID系统催化的邻近标记是用于定义活细胞中靶蛋白的分子相互作用的强大技术。TurboID和miniTurbo(TurboID的修改版本)是工程化的生物素连接酶,以混杂的方式生物素化相邻的蛋白质。当与靶蛋白融合并在活细胞中表达时,TurboID或miniTurbo介导蛋白质的生物素标记与靶蛋白非常接近,允许有效纯化生物素化的蛋白质,然后进行弹枪蛋白质组学分析。在这一章中,我们描述了通过TurboID或miniTurbo标记GPCR邻近蛋白的分步方案,纯化生物素标记的蛋白质,和随后的样品制备用于蛋白质组学分析。我们利用S1PR1作为GPCR模型,生物活性脂质分子1-磷酸鞘氨醇(S1P)的受体,在生理和病理条件下发挥各种作用。该分析流程能够绘制活细胞中脂质GPCRs的相互作用蛋白。
    G-protein-coupled receptors (GPCRs) are hepta-helical transmembrane proteins that mediate various intracellular signaling events in response to their specific ligands including many lipid mediators. Although analyses of GPCR molecular interactions are pivotal to understanding diverse intracellular signaling events, affinity purification of interacting proteins by a conventional co-immunoprecipitation method is challenging due to the hydrophobic nature of GPCRs and their dynamic molecular interactions. Proximity labeling catalyzed by a TurboID system is a powerful technique for defining the molecular interactions of target proteins in living cells. TurboID and miniTurbo (a modified version of TurboID) are engineered biotin ligases that biotinylate neighboring proteins in a promiscuous manner. When fused with a target protein and expressed in living cells, TurboID or miniTurbo mediates the biotin labeling of the proteins with close proximity to the target protein, allowing efficient purification of the biotinylated proteins followed by a shot-gun proteomic analysis. In this chapter, we describe a step-by-step protocol for the labeling of GPCR neighboring proteins by TurboID or miniTurbo, purification of the biotin-labeled proteins, and subsequent sample preparation for proteomic analysis. We utilized S1PR1 as a model GPCR, a receptor for a bioactive lipid molecule sphingosine 1-phosphate (S1P) that plays various roles in physiological and pathological conditions. This analysis pipeline enables the mapping of interacting proteins of lipid GPCRs in living cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    使用邻近标记技术进行蛋白质-蛋白质相互作用研究,例如基于生物素连接酶的BioID,已经成为理解细胞过程不可或缺的一部分。大多数研究利用传统的二维细胞培养系统,在3D组织中发现的蛋白质行为可能缺少重要差异。在这项研究中,我们研究了蛋白质的蛋白质相互作用,Bcl-2细胞死亡激动剂(BAD),并将传统的2D培养条件与3D系统进行了比较,其中细胞包埋在3D细胞外基质(ECM)模拟物中。使用BAD与工程生物素连接酶miniTurbo(BirA*)融合,我们在2D和3D条件下确定了重叠和不同的BAD相互作用。已知的BAD结合蛋白14-3-3同种型和Bcl-XL在2D和3D中均与BAD相互作用。在确定的131个坏人中,56%是2D特有的,14%是3D特有的,和30%是共同的条件。交互网络分析证明了2D和3D交互体之间的差异关联,强调培养条件对蛋白质相互作用的影响。2D-3D重叠相互作用组封装了凋亡程序,这是众所周知的BAD的作用。3D独特的途径富含ECM信号,暗示着迄今为止未知的BAD功能。因此,在3D中探索蛋白质-蛋白质相互作用提供了细胞行为的新线索。这种令人兴奋的方法有可能弥合可处理的2D细胞培养和类器官3D系统之间的知识差距。
    Protein-protein interaction studies using proximity labeling techniques, such as biotin ligase-based BioID, have become integral in understanding cellular processes. Most studies utilize conventional 2D cell culture systems, potentially missing important differences in protein behavior found in 3D tissues. In this study, we investigated the protein-protein interactions of a protein, Bcl-2 Agonist of cell death (BAD), and compared conventional 2D culture conditions to a 3D system, wherein cells were embedded within a 3D extracellular matrix (ECM) mimic. Using BAD fused to the engineered biotin ligase miniTurbo (BirA*), we identified both overlapping and distinct BAD interactomes under 2D and 3D conditions. The known BAD binding proteins 14-3-3 isoforms and Bcl-XL interacted with BAD in both 2D and 3D. Of the 131 BAD-interactors identified, 56% were specific to 2D, 14% were specific to 3D, and 30% were common to both conditions. Interaction network analysis demonstrated differential associations between 2D and 3D interactomes, emphasizing the impact of the culture conditions on protein interactions. The 2D-3D overlap interactome encapsulated the apoptotic program, which is a well-known role of BAD. The 3D unique pathways were enriched in ECM signaling, suggestive of hitherto unknown functions for BAD. Thus, exploring protein-protein interactions in 3D provides novel clues into cell behavior. This exciting approach has the potential to bridge the knowledge gap between tractable 2D cell culture and organoid-like 3D systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单细胞型蛋白质组学是一个新兴的研究领域,它将细胞类型特异性与批量蛋白质组学提供的全面蛋白质组覆盖相结合。然而,单细胞型蛋白质组的提取仍然是一个挑战,特别是对于像神经元这样难以分离的细胞。在这一章中,我们提出了一种使用腺相关病毒(AAV)介导的邻近标记(PL)和串联质量标签(TMT)质谱分析单细胞型蛋白质组的创新技术。这种技术消除了细胞隔离的需要,并提供了一个简化的工作流程,包括AAV递送以表达由细胞类型特异性启动子控制的TurboID(工程化生物素连接酶),生物素化蛋白纯化,珠上消化,TMT标签,和液相色谱-质谱(LC-MS)。我们通过分析小鼠中不同的脑细胞类型来检查这种方法。最初,重组AAV用于同时表达由神经元或星形胶质细胞特异性启动子驱动的TurboID和mCherry蛋白,通过与细胞标志物的共免疫染色进行验证。用生物素纯化和TMT分析,我们成功地从几微克的蛋白质样品中鉴定出了约10,000种独特的蛋白质,具有很高的可重复性.我们的统计分析显示,这些蛋白质组包含细胞类型特异性细胞通路。通过利用这种技术,研究人员可以探索特定细胞类型的蛋白质组景观,为细胞过程的新见解铺平道路,破译疾病机制,并确定神经科学及其他领域的治疗目标。
    Single-cell-type proteomics is an emerging field of research that combines cell-type specificity with the comprehensive proteome coverage offered by bulk proteomics. However, the extraction of single-cell-type proteomes remains a challenge, particularly for hard-to-isolate cells like neurons. In this chapter, we present an innovative technique for profiling single-cell-type proteomes using adeno-associated virus (AAV)-mediated proximity labeling (PL) and tandem-mass-tag (TMT) mass spectrometry. This technique eliminates the need for cell isolation and offers a streamlined workflow, including AAV delivery to express TurboID (an engineered biotin ligase) controlled by cell-type-specific promoters, biotinylated protein purification, on-bead digestion, TMT labeling, and liquid chromatography-mass spectrometry (LC-MS). We examined this method by analyzing distinct brain cell types in mice. Initially, recombinant AAVs were used to concurrently express TurboID and mCherry proteins driven by neuron- or astrocyte-specific promoters, which was validated through co-immunostaining with cellular markers. With biotin purification and TMT analysis, we successfully identified around 10,000 unique proteins from a few micrograms of protein samples with high reproducibility. Our statistical analyses revealed that these proteomes encompass cell-type-specific cellular pathways. By utilizing this technique, researchers can explore the proteomic landscape of specific cell types, paving the way for new insights into cellular processes, deciphering disease mechanisms, and identifying therapeutic targets in neuroscience and beyond.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号