Transglycosylation

转糖基化
  • 文章类型: Journal Article
    Cello寡糖(COS)是一种新型的功能性寡糖。研究了COS转糖基化反应以提高COS产量。寻求自由形式的镰刀菌β-葡萄糖苷酶(FBgl1)在低底物浓度下合成COS的能力,我们发现这种生物催化剂仅用1g/L的纤维二糖就能引发这种反应,导致细胞三糖的形成。在具有固定的FBgl1的双相条件下,当增加至50g/L的纤维二糖作为起始剂浓度时,可以检测到纤维素三糖和纤维五糖。在生物催化剂回收过程之后,5个周期后,COS的反糖基化产量保持不变,COS浓度为6.70±0.35g/L粗COS含有20.15±0.25g/L葡萄糖,23.15±0.22g/L非反应底物纤维二糖,5.25±0.53g/L,纤维三糖和1.49±0.32g/L纤维戊糖。开发了一种用于细胞三糖富集的生物过程,使用完整的马铃薯芽孢杆菌细胞作为微生物纯化工具。这种细菌消耗葡萄糖,未反应的纤维二糖,和纤维戊糖,同时在发酵培养基中保留纤维三糖。该研究为工业COS生产提供了极好的候选酶,也是对单步COS富集工艺的首次研究。
    Cello-oligosaccharides (COS) become a new type of functional oligosaccharides. COS transglycosylation reactions were studied to enhance COS yield production. Seeking the ability of the free form of Fusarium solani β-glucosidase (FBgl1) to synthesize COS under low substrate concentrations, we found out that this biocatalyst initiates this reaction with only 1 g/L of cellobiose, giving rise to the formation of cellotriose. Cellotriose and cellopentaose were detected in biphasic conditions with an immobilized FBgl1 and when increased to 50 g/L of cellobiose as a starter concentration. After the biocatalyst recycling process, the trans-glycosylation yield of COS was maintained after 5 cycles, and the COS concentration was 6.70 ± 0.35 g/L. The crude COS contained 20.15 ± 0.25 g/L glucose, 23.15 ± 0.22 g/L non-reacting substrate cellobiose, 5.25 ± 0.53 g/L, cellotriose and 1.49 ± 0.32 g/L cellopentaose. A bioprocess was developed for cellotriose enrichment, using whole Bacillus velezensis cells as a microbial purification tool. This bacteria consumed glucose, unreacted cellobiose, and cellopentaose while preserving cellotriose in the fermented medium. This study provides an excellent enzyme candidate for industrial COS production and is also the first study on the single-step COS enrichment process.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    刺槐糖是里氏木霉生产纤维素酶最有效的诱导剂。目前,槐糖的生物合成效率很低,导致工业上无法用于纤维素酶生产。在这项研究中,CoGH1A,多功能嗜热糖苷水解酶,被用于苦参生产。在优化条件下,槐糖产量为37.86g/L,生产率为9.47g/L/h,是迄今为止最高的生产率。同时,构建了Fe3O4-CS-THP-CoGH1A纳米粒子,实现了CoGH1A的循环利用。经过5个循环的催化,Fe3O4-CS-THP-CoGH1A保留了约83.90%的酶活性。最后,在CoGH1A催化后获得的葡萄糖和二糖的混合物(MGDC)用于生产纤维素酶。因此,纤维素酶的生产率在120h内达到188.38FPU/L/h。这些结果表明,通过CoGH1A的转糖基化可以从葡萄糖中有效地生产槐糖,从而可以在工业上用作诱导剂以提高纤维素酶的生产率。
    Sophorose is the most effective inducer for cellulase production by Trichoderma reesei. Currently, the biosynthesis of sophorose is very inefficient, resulting in that unavailable for cellulase production in industry. In this study, CoGH1A, a multifunctional thermophilic glycoside hydrolase, was employed for sophorose production. Under the optimized conditions, the sophorose yield was 37.86 g/L with a productivity of 9.47 g/L/h which is by far the highest productivity. Meanwhile, the Fe3O4-CS-THP-CoGH1A nanoparticles were constructed to realize the recycling of CoGH1A. After 5 cycles of catalysis, Fe3O4-CS-THP-CoGH1A retained about 83.90 % enzyme activity. Finally, the mixtures of glucose and disaccharides (MGDC) obtained after being catalyzed by CoGH1A was used for cellulase production. As a result, the cellulase productivity achieved 188.38 FPU/L/h in 120 h. These results indicated that sophorose could be efficiently produced from glucose via transglycosylation by CoGH1A, making it possible to be industrially used as the inducer to improving the cellulase productivity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    西花雪旺菌的α-葡萄糖苷酶(GAM1p)在白斑杆菌中的表达量约为70mg/L,并对其转移酶活性进行了详细研究。使用200g/L麦芽糖形成几种异麦芽寡糖(IMOS)。当98%麦芽糖被水解时,获得了IMOS(81.3g/L)的主要产量,其中34.8g/L对应于异麦芽糖,26.9g/L至异麦芽三糖,和19.6g/L到panose。葡萄糖的添加使IMOS合成转向仅包含α(1→6)-键的产物,将异麦芽糖和异麦芽三糖的产量增加约2-4倍,能够形成异麦芽四糖,并抑制panose的大约12倍。此外,该酶糖基化12种可能的羟基化受体的潜力,包括八种糖和四种酚类化合物,进行了评估。其中,只有蔗糖,木糖,和piceid(白藜芦醇的单糖基化衍生物)被糖基化,并对主要合成产物进行了纯化,并通过MS和NMR进行了表征。Theanderose,α(1→4)-D-葡萄糖基木糖,用蔗糖获得piceid单葡萄糖苷和二葡萄糖苷的混合物,木糖,作为接受者,分别。红豆糖的最大产量达到81.7g/L,葡萄糖基木糖的最大产量达到26.5g/L,而piceid单葡萄糖苷和二葡萄糖苷分别产生3.4g/L和仅1g/L。关键点:·产生新分子的酵母α-葡糖苷酶的过表达。•产生异寡糖Theanderose和葡糖基-木糖的酵母酶。·通过酵母α-葡糖苷酶糖基化多酚piceid。
    The α-glucosidase from Schwanniomyces occidentalis (GAM1p) was expressed in Komagataella phaffii to about 70 mg/L, and its transferase activity studied in detail. Several isomaltooligosaccharides (IMOS) were formed using 200 g/L maltose. The major production of IMOS (81.3 g/L) was obtained when 98% maltose was hydrolysed, of which 34.8 g/L corresponded to isomaltose, 26.9 g/L to isomaltotriose, and 19.6 g/L to panose. The addition of glucose shifted the IMOS synthesis towards products containing exclusively α(1 → 6)-linkages, increasing the production of isomaltose and isomaltotriose about 2-4 fold, enabling the formation of isomaltotetraose, and inhibiting that of panose to about 12 times. In addition, the potential of this enzyme to glycosylate 12 possible hydroxylated acceptors, including eight sugars and four phenolic compounds, was evaluated. Among them, only sucrose, xylose, and piceid (a monoglucosylated derivative of resveratrol) were glucosylated, and the main synthesised products were purified and characterised by MS and NMR. Theanderose, α(1 → 4)-D-glucosyl-xylose, and a mixture of piceid mono- and diglucoside were obtained with sucrose, xylose, and piceid as acceptors, respectively. Maximum production of theanderose reached 81.7 g/L and that of the glucosyl-xylose 26.5 g/L, whereas 3.4 g/L and only 1 g/L were produced of the piceid mono- and diglucoside respectively. KEY POINTS: • Overexpression of a yeast α-glucosidase producing novel molecules. • Yeast enzyme producing the heterooligosaccharides theanderose and glucosyl-xylose. • Glycosylation of the polyphenol piceid by a yeast α-glucosidase.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    β-半乳糖苷酶的转半乳糖基酶活性为乳糖转化为高价值寡糖提供了一种方便且有前途的策略。例如低聚半乳糖(GOS)和人乳寡糖(HMO)。在这项研究中,我们克隆了一种新型的C末端截短的β-半乳糖苷酶(PaBgal2A-D),并进行了生化鉴定,该酶具有高的转糖基化活性。PaBgal2A-D是糖苷水解酶(GH)家族2的成员。确定PaBgal2A-D的最佳pH和温度为pH6.5和50°C,分别。在pH5.0-8.0和高达50°C内相对稳定。PaBgal2A-D对GOS合成显示出高的转糖基化活性,在2h内获得50.8%(wt/wt)的最大产率。PaBgal2A-D可以使用乳糖和乳糖-N-三糖II(LNT2)合成乳糖-N-新四糖(LNnT),转化率为16.4%。这项研究表明,PaBgal2A-D可能是制备GOS和LNnT的有前途的工具。
    The transgalactosylase activity of β-galactosidases offers a convenient and promising strategy for conversion of lactose into high-value oligosaccharides, such as galacto-oligosaccharides (GOS) and human milk oligosaccharides (HMOs). In this study, we cloned and biochemically characterized a novel C-terminally truncated β-galactosidase (PaBgal2A-D) from Paenibacillus antarcticus with high transglycosylation activity. PaBgal2A-D is a member of glycoside hydrolase (GH) family 2. The optimal pH and temperature of PaBgal2A-D were determined to be pH 6.5 and 50°C, respectively. It was relatively stable within pH 5.0-8.0 and up to 50°C. PaBgal2A-D showed high transglycosylation activity for GOS synthesis, and the maximum yield of 50.8% (wt/wt) was obtained in 2 h. Moreover, PaBgal2A-D could synthesize lacto-N-neotetraose (LNnT) using lactose and lacto-N-triose II (LNT2), with a conversion rate of 16.4%. This study demonstrated that PaBgal2A-D could be a promising tool to prepare GOS and LNnT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究旨在将β-半乳糖苷酶(β-GAL)固定到具有功能化氧化石墨烯(GO)的增强型聚苯乙烯(PS)电纺纳米纤维膜(ENM)中。最初,GO片材通过用3-氨基丙基三乙氧基硅烷(APTES)盐碱化而官能化。然后ENM(PS,PS/GO,和PS/GO-APTES)的制备和表征。然后,将β-GAL固定在不同的ENM中,以产生β-GAL结合的纳米复合材料(PS-GAL,PS/GO-GAL,和PS/GO-APTES-GAL)。将β-GAL固定化到PS/GO-APTES中可显著提高酶吸附达87%。此外,PS/GO-APTES-GAL提高酶活性,其中在4mg/L的酶浓度下获得最高的酶活性,50°C,和pH4.5。同样,提高了固定化β-GAL的储存稳定性和可重用性。此外,此过程导致增强的催化行为和转半乳糖基化效率,其中与游离酶相比,GOS合成(72%)和乳糖转化率(81%)显著增加。总的来说,这项研究中产生的固定化β-GAL显示出作为食品工业中有效生物催化剂的潜力。
    This study aimed to immobilize β-galactosidase (β-GAL) into enhanced polystyrene (PS) electrospun nanofiber membranes (ENMs) with functionalized graphene oxide (GO). Initially, GO sheets were functionalized by salinization with 3-aminopropyl triethoxysilane (APTES). Then the ENMs (PS, PS/GO, and PS/GO-APTES) were prepared and characterized. Then, the β-GAL was immobilized in the different ENMs to produce the β-GAL-bound nanocomposites (PS-GAL, PS/GO-GAL, and PS/GO-APTES-GAL). Immobilization of β-GAL into PS/GO-APTES significantly improved enzyme adsorption by up to 87 %. Also, PS/GO-APTES-GAL improved the enzyme activity, where the highest enzyme activity was obtained at enzyme concentrations of 4 mg/L, 50 °C, and pH 4.5. Likewise, the storage stability and reusability of immobilized β-GAL were improved. Furthermore, this process led to enhanced catalytic behavior and transgalactosylation efficiency, where GOS synthesis (72 %) and lactose conversion (81 %) increased significantly compared to the free enzyme. Overall, the immobilized β-GAL produced in this study showed potential as an effective biocatalyst in the food industry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:低靶向功效和高毒性仍然是肿瘤学的挑战。有希望的策略是化学治疗剂的糖基化以改善其药效学和抗肿瘤活性。在这里,我们提供了一种新方法的证据,该方法使用来自Hypecreales真菌的二糖苷酶来获得具有增强抗肿瘤能力的新型鲁丁糖缀合物治疗剂。
    结果:在28个与遗传相关的种属中筛选二糖苷酶活性确定了6-O-α-鼠李糖基-β-葡萄糖苷酶(αRβG)严格的SarocladiumDMic093557作为我们研究的候选酶。生物化学表征表明,αRβG具有转糖基化庞大的OH受体的能力,包括生物活性化合物。有趣的是,间苯三酚(PR)间苯二酚(RR)和4-甲基伞形酮(4MUR)的芦丁苷衍生物对胰腺癌细胞的生长抑制活性高于相应的糖苷配基,而不会显着影响正常的胰腺上皮细胞。PR表现出最高的疗效,IC50为0.89mM,然后是IC50为1.67mM的RR,和4MUR,IC50为2.4mM,而各自的糖苷配基显示出较高的IC50值:间苯三酚为4.69mM,间苯二酚为5.90mM,4-甲基伞形酮为4.8mM。Further,糖缀合物使胰腺癌细胞对标准的治疗化疗药物吉西他滨显著敏感。
    结论:来自基于跨糖基链球菌的αRβG合成芦丁苷的方法代表了增强生物活性化合物抗增殖作用的合适选择。这一发现为开发更有效的胰腺癌和其他实体恶性肿瘤疗法开辟了新的可能性。
    BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity.
    RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-β-glucosidase (αRβG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRβG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine.
    CONCLUSIONS: αRβG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究了五种GH29Bα-1,3/4-l-岩藻糖苷酶(EC3.2.1.111)催化由乳N-四糖形成人乳寡糖乳N-岩藻五糖II(LNFPII)的能力。(LNT)和3-岩藻糖基乳糖(3FL)通过转糖基化。我们研究了pH对转岩藻糖基化和水解的影响,并使用分子动力学模拟探索了特定突变的影响。野生型SpGH29C和CpAfc2酶的LNFPII产率分别为91%和65%,分别,是迄今为止报道的最高LNFPII转糖基化产率。BbAfcB和BiAfcB是高度水解酶。结果表明,pH和缓冲系统的影响是酶依赖性的,但在设计转糖基反应时需要考虑。用Val替换BiAfcB中的Thr284导致转糖产量增加,而SpGH29C和Val289CpAfc2中的Val258用Thr的相反替换减少了转岩藻糖基化,确认Thr和Val在控制酶中酸/碱回路的灵活性中的作用,进而影响转糖基。用His取代Ala残基几乎消除了CpAfc2和BbAfcB中的二次水解。结果直接适用于增强转糖基,并且可能对LNFPII作为新的婴儿配方成分的制造具有重要意义。
    Five GH29B α-1,3/4-l-fucosidases (EC 3.2.1.111) were investigated for their ability to catalyze the formation of the human milk oligosaccharide lacto-N-fucopentaose II (LNFP II) from lacto-N-tetraose (LNT) and 3-fucosyllactose (3FL) via transglycosylation. We studied the effect of pH on transfucosylation and hydrolysis and explored the impact of specific mutations using molecular dynamics simulations. LNFP II yields of 91 and 65% were obtained for the wild-type SpGH29C and CpAfc2 enzymes, respectively, being the highest LNFP II transglycosylation yields reported to date. BbAfcB and BiAfcB are highly hydrolytic enzymes. The results indicate that the effects of pH and buffer systems are enzyme-dependent yet relevant to consider when designing transglycosylation reactions. Replacing Thr284 in BiAfcB with Val resulted in increased transglycosylation yields, while the opposite replacement of Val258 in SpGH29C and Val289 CpAfc2 with Thr decreased the transfucosylation, confirming a role of Thr and Val in controlling the flexibility of the acid/base loop in the enzymes, which in turn affects transglycosylation. The substitution of an Ala residue with His almost abolished secondary hydrolysis in CpAfc2 and BbAfcB. The results are directly applicable in the enhancement of transglycosylation and may have significant implications for manufacturing of LNFP II as a new infant formula ingredient.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究报告了一种来自Rasamsoniaemersonii的高度热稳定的β-葡萄糖苷酶(GH3),该酶在巴斯德毕赤酵母中异源表达。使用分子量为〜110kDa的单步亲和色谱法将细胞外β-葡萄糖苷酶纯化至均一。有趣的是,纯化的酶对主要是乙酸的抑制剂表现出很高的耐受性,甲酸,阿魏酸,香草醛和5-羟甲基糠醛的浓度超过在2G乙醇工厂中用于水解和随后发酵的酸蒸汽预处理的稻草浆液中的浓度。纯化的β-葡萄糖苷酶的特征揭示了在80°C时的最佳活性,pH5.0,在50-70°C的较宽温度范围内显示出高的热稳定性,在50°C时的最大半衰期为〜60h,pH5.0。在存在甲醇作为受体的情况下,β-葡萄糖苷酶的推定转糖基活性得到了显着增强。利用β-葡萄糖苷酶的转糖基化能力,产生的低成本混合葡萄糖二糖导致在深层发酵下增加了对R.emersonii纤维素酶的诱导。使用时间进料方法在发酵罐水平上扩大重组蛋白的生产,导致最大β-葡萄糖苷酶滴度为134,660单位/L。此外,一种开发的定制酶混合物,由来自R.emersonii突变体M36的纤维素酶组成,补充了重组β-葡萄糖苷酶,从而显着增强了IOCL行业(印度)预处理过的稻草浆液的水解。我们的研究结果表明,来自梅尔索尼的多方位β-葡萄糖苷酶可以克服障碍,主要是高成本相关的酶生产,抑制糖产率和酶热失活的抑制剂。
    The present study reports a highly thermostable β-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular β-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified β-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of β-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of β-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal β-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant β-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted β-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自Acremoniumsp的真菌二糖苷酶α-鼠李糖基-β-葡萄糖苷酶I(αRβGI)。DSM24697使用柑橘黄酮橙皮苷催化各种OH受体的糖基化。我们成功地应用了一锅生物催化工艺,使用柑橘皮残留物作为糖供体合成了4-甲基umbellipherylrutinoside(4-MUR)和甘油基rutinoside。这些残留物,其中含有3.5%[w/w]橙皮苷,是生产橙汁后柑橘加工的剩余部分,精油,和果皮汁。低成本的复合甘油用于合成甘油基糖苷。我们实施了一种简单的方法,以99%的收率获得甘油基rutinoside,它的净化涉及活性炭,这也促进了通过液-液萃取回收副产物橙皮素。该工艺为生物炼制操作提供了有希望的替代方案,强调αRβGI在甘油和农业副产品中的价值作用。关键词:·αRβG1使用OPW的悬浮液作为糖供体催化鲁特诺苷的合成。·脂肪族多元醇通过αRβG1的糖基化产生带有单一树胶糖部分的产物。•αRβG1催化合成具有高糖基化/水解选择性(99%产率)的甘油基糖苷。
    The fungal diglycosidase α-rhamnosyl-β-glucosidase I (αRβG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRβG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRβG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRβG I resulted in products bearing a single rutinose moiety. • αRβG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    环状β-1,2-葡聚糖合酶(CGS)是产生环状β-1,2-葡聚糖(CβG)的关键酶,该酶参与细菌感染或与宿主生物的共生。然而,环化机制,CGS反应的最后一步,还没有被完全理解。在这里,我们对意大利热厌氧杆菌(TiCGSCy)的CGS环化域进行了功能和结构分析。我们首先发现,TiCGSCy以线性β-1,2-葡聚糖为底物生产β-葡萄糖苷酶抗性化合物。1H-NMR分析显示这些产物是CβG。接下来,使用β-1,2-葡萄糖寡糖的作用模式分析揭示了独特的反应模式:不水解的专有转糖基化和六糖是底物的最小长度。这些分析还表明,较长的底物β-1,2-葡萄糖寡糖是优选的,与CGS通常产生聚合度约为20的CβG的事实一致。最后,发现TiCGSCy的环化结构域的整体结构与系统发育不同组中的β-1,2-葡聚糖酶的结构相似。同时,鉴定的催化残基表明这些酶之间的反应途径存在明显差异。总的来说,我们提出了一种新的TiCGSCy反应机理。因此,该组CGS定义了一个新的糖苷水解酶家族,GH189.关键词:•清楚地证明环化结构域单独产生环状β-1,2-葡聚糖。•结构域专门催化转糖基化而不水解。•本发明的催化结构域定义为新的糖苷水解酶家族189。
    Cyclic β-1,2-glucan synthase (CGS) is a key enzyme in production of cyclic β-1,2-glucans (CβGs) which are involved in bacterial infection or symbiosis to host organisms. Nevertheless, a mechanism of cyclization, the final step in the CGS reaction, has not been fully understood. Here we performed functional and structural analyses of the cyclization domain of CGS alone from Thermoanaerobacter italicus (TiCGSCy). We first found that β-glucosidase-resistant compounds are produced by TiCGSCy with linear β-1,2-glucans as substrates. The 1H-NMR analysis revealed that these products are CβGs. Next, action pattern analyses using β-1,2-glucooligosaccharides revealed a unique reaction pattern: exclusive transglycosylation without hydrolysis and a hexasaccharide being the minimum length of the substrate. These analyses also showed that longer substrate β-1,2-glucooligosaccharides are preferred, being consistent with the fact that CGSs generally produce CβGs with degrees of polymerization of around 20. Finally, the overall structure of the cyclization domain of TiCGSCy was found to be similar to those of β-1,2-glucanases in phylogenetically different groups. Meanwhile, the identified catalytic residues indicated clear differences in the reaction pathways between these enzymes. Overall, we propose a novel reaction mechanism of TiCGSCy. Thus, the present group of CGSs defines a new glycoside hydrolase family, GH189. KEY POINTS: • It was clearly evidenced that cyclization domain alone produces cyclic β-1,2-glucans. • The domain exclusively catalyzes transglycosylation without hydrolysis. • The present catalytic domain defines as a new glycoside hydrolase family 189.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号